

HYBRID META-HEURISTIC ALGORITHMS FOR UNIVERSITY COURSE
TIMETABLING PROBLEMS

KHALID SHAKER JASIM

THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

FAKULTI TEKNOLOGI DAN SAINS MAKLUMAT

UNIVERSITI KEBANGSAAN MALAYSIA
BANGI

2011

ALGORITMA HIBRID META-HEURISTIK UNTUK MASALAH PENJADUALAN
KURSUS UNIVERSITI

KHALID SHAKER JASIM

TESIS YANG DIKEMUKAKAN UNTUK MEMPEROLEH IJAZAH
DOKTOR FALSAFAH

FAKULTI TEKNOLOGI DAN SAINS MAKLUMAT
UNIVERSITI KEBANGSAAN MALAYSIA

BANGI

2011

iii

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged.

1 July 2011 KHALID SHAKER JASIM
 P39452

iv

ACKNOWLEDGMENT

All the praises be to the mighty Allah, the Merciful and the Beneficent for the strength
and blessing in the completion of this study.

Indeed there are many wonderful people who have contributed significantly
throughout the whole course of my study up to the completion of this thesis. I owe a
great deal to them.

First and foremost, I wish to express my most sincere acknowledgment to my

supervisor: Assoc. Prof. Dr. Salwani Abdullah for her valuable guidance, generosity
and freedom throughout the entire research and thesis writing. Sincere appreciation
goes to Professor Dr. Masri Ayob for her constructive comment. Many thanks for Dr.
Paull McMullan for the encouragement, thoughtful comments and helpful discussion.

To my dearest mother and father, thank you for bringing me up to who I am
today. My success symbolizes and reflects the support and love from both of you.
My deepest appreciation goes to my wife and children for their love, patience and
understanding.

I am very grateful to UKM and all the staff and members of the School of
Computer Science for the help, and friends who have assisted me whenever I need
them.

v

ABSTRACT

University course timetabling problem represents an NP-hard optimisation problem. It
deals with an assignment of events and resources to timeslots and rooms while
satisfying various constraints. The key problem associated with course timetabling
problems is to find a high quality timetable. However, it is typically a difficult and
time consuming task due to the size of the problem and satisfying all hard constrains
while minimising the soft constrains violations as far as possible. The aim of the
research represented in this thesis is to provide effective approaches for finding good
quality solutions for university course timetabling. This has been achieved via a
number of meta-heuristic approaches. The research first highlights a hybridisation
approach with the aim integrating of the mechanism of Great Deluge Algorithm with
the mechanism of Tabu Search Algorithm using number of neighbourhood structures.
Next, the research investigates a different neighbourhood structure i.e. a Kempe Chain
neighbourhood structure that is employed within the Great Deluge algorithm with an
assumption that Kempe Chain neighbourhood structures can help in obtaining better
solutions during the search process. The selection of the neighbourhood structures is
later been controlled using a Round Robin algorithm, where each neighbourhood
structure is given a time slice to be employed. This mechanism is embedded in a novel
Dual Simulated Annealing algorithm. All of the algorithms discussed above are
single-based solution approaches. The final algorithm investigated in this thesis is the
ability of the hybridisation of population-based approach (Bacteria Swarm
Optimisation Algorithm). This uses small neighbourhood structures with a Deferential
Evaluation Algorithm in order to explore the search space while looking for better
solutions. The performance of each algorithm is tested on the standard enrolment-
based course timetabling problems and the curriculum-based international timetabling
competition (ITC2007) datasets. Computational results show that in most of the cases,
the presented approaches significantly outperform other available techniques on the
established benchmark course timetabling problems.

vi

ABSTRAK

Masalah penjadualan waktu kursus universiti merupakan masalah pengoptimuman
NP-Sukar. Masalah ini melibatkan proses pengumpukan kursus kepada waktu kursus
dan bilik kuliah dengan mempertimbangkan beberapa kekangan keras. Masalah utama
dengan penjadualan waktu adalah untuk mencari jadual yang berkualiti tinggi. Walau
bagaimanapun, ia merupakan suatu tugas yang sukar dan memerlukan masa yang lama
untuk diselesaikan disebabkan oleh saiz masalah, cubaan mematuhi kekangan wajib
dan meminimikan perlanggaran kekangan pilihan. Matlamat penyelidikan ini adalah
untuk menyediakan pendekatan yang efektif untuk menyelesaikan masalah
penjadualan jadual waktu kursus universiti. Matlamat ini telah dicapai melalui
beberapa pendekatan meta-heuristik. Penyelidikan ini dimulakan dengan
pembangunan pendekatan hibrid iaitu pendekatan Great Deluge diintegrasikan dengan
algoritma Tabu Search menggunakan struktur kejiiranan yang kecil. Ini dikuti dengan
penyelidikan sturuktur kejiranan Kempe Chain yang diguna pakai bersama dengan
pendekatan Great Deluge dengan andaian struktur kejiranan Kempe Chain berupaya
membantu mendapatkan penyelesaian yang lebih baik semasa proses carian.
Pemilihan struktur kejiranan kemudiannya dikawal oleh algoritma Round Robin.
Setiap struktur kejiranan diumpukkan tempoh masa untuk digunakan. Mekanisma ini
diimplementasikan bersama dengan algoritma Dual Simulated Annealing. Kesemua
algoritma yang dibincangkan di atas adalah pendekatan berasaskan penyelesaian-
tunggal. Sumbangan terakhir adalah untuk menyelidik keupayaan menghibridisasikan
pendekatan berasaskan populasi iaitu Bacteria Swarm Optimization yang
menggunakan struktur kejiranan yang kecil dengan algoritma Deferential Evaluation
dalam meneroka ruang carian bagi mendapatkan penyelesaian yang lebih baik.
Prestasi setiap algoritma diuji pada masalah piawai penjadualan waktu kursus
berasaskan enrolmen dan set data pertandingan penjadualan antarabangsa berasaskan
kurikulum (ITC2007). Dalam kebanyakan kes, keputusan ekperimen menunjukkan
prestasi pendekatan yang dicadangkan adalah lebih baik berbanding pendekatan lain
dalam masalah penjadualan waktu kursus.

vii

CONTENTS

 Page

DECLARATION iii

ACKNOWLEDGMENTS iv

ABSTRACT v

ABSTRAK vi

CONTENTS vii

LIST OF FIGURES xi

LIST OF TABLES xv

CHAPTER I INTRODUCTION

1.1 Background and Motivation 1

1.2 Problem Statement 3

1.3 Research Objectives 5

1.4 Research Scope 7

1.5 Overview of the Thesis 7

CHAPTER II OVERVIEW OF ALGORITHMIC APPROACHES TO
COURSE TIMETABLING PROBLEMS

2.1 Introduction 10

2.2 Timetabling Problems 10

2.3 University Course Timetabling Problems 12

2.4 Techniques Applied to the University Course
Timetabling Problem 13

 2.4.1 Enrolment-Based Course Timetabling
 Problems 15
 2.4.2 Curriculum-based Course Timetabling

 Problems ITC2007-Track 3 41

2.5 Brief Summary 46

CHAPTER II I RESEARCH METHODOLOGY

3.1 Introduction 47

3.2 Research Design 47

3.3 Specification and Problem Formulation 49

 3.3.1 Enrolment-Based Course Timetabling
 Problem 49

viii

 3.3.2 Curriculum-based Course Timetabling
 Problem 51

3.4 Construction Phase: Constructive Heuristic
 Algorithms 57

 3.4.1 Constructive Algorithm for Enrolment
 -Based Course Timetabling Problems 57
 3.4.2 Constructive Algorithm for Curriculum
 -Based Course Timetabling Problems 59

3.5 Improvement Phase 60

3.6 Brief Summary 61

CHAPTER IV HYBRID GREAT DELUGE WITH TABU SEARCH
ALGORITHM

4.1 Introduction 62

4.2 Proposed Method: Great Deluge and Tabu Search 63

 4.2.1 Neighbourhood Structures 63
 4.2.2 Improvement Algorithm using the Great

 Deluge and Tabu Search Algorithm 63

4.3 Experimental Results 70

 4.3.1 Enrolment-Based Course Timetabling
 Problem 70

 4.3.2 Curriculum-Based Course Timetabling
 Problem 76

4.4 Brief Summary 85

CHAPTER V INCORPORATING GREAT DELUGE

ALGORITHM WITH KEMPE CHAIN
NEIGHBOURHOOD STRUCTURE

5.1 Introduction 87

5.2 Proposed Method: Great Deluge and Kempe Chain 88

 5.2.1 Neighbourhood Structures 88
 5.2.2 Improvement Algorithm using a Great Deluge

 with Kempe Chain Neighbourhood Structure 90

5.3 Round-Robin Algorithm (RR) 92

5.4 Experimental Results 93

 5.4.1 Enrolment-Based Course Timetabling
 Problem 93

 5.4.2 Curriculum-Based Course Timetabling
 Problem 97

ix

5.5 Brief Summary 106

CHAPTER VI DUAL SEQUENCE SIMULATED ANNEALING
WITH ROUND-ROBIN APPROACH

6.1 Introduction 107

6.2 Neighbourhood Structures 108

6.3 Proposed Method: Dual-Sequence Simulated
Annealing (DSA) 108

6.4 Experimental Results 111

 6.4.1 Enrolment-Based Course Timetabling
 Problem 111

 6.4.2 Curriculum-Based Course Timetabling
 Problem 116

6.5 Brief Summary 125

CHAPTER VII BACTERIA SWARM OPTIMISATION
ALGORITHM

7.1 Introduction 127

7.2 Proposed Method: Bacteria Swarm
Optimisation (BSO) 128

7.3 Differential Evolution Algorithm (DE) 133

7.3.1 Chromosome Representation 134
 7.3.2 Mutation and Crossover Operations 134

7.4 Experimental Results 135

 7.4.1 Enrolment-Based Course Timetabling
 Problem 136

 7.4.2 Curriculum-Based Course Timetabling
 Problem 139

7.5 Brief Summary 150

CHAPTER VIII ANALYSIS AND EVALUATION

8.1 Introduction 151

8.2 Hypothesis Testing 152

8.3 Results Evaluation 153

8.3.1 Total of Penalty Cost 153
 8.3.2 The Values of t-test and p-value 157

8.4 Brief Summary 163

x

CHAPTER IX CONCLUSION AND FUTURE WORK

9.1 Introduction 164

9.2 Summary of the Presented Approaches 164

9.3 Contributions 166

9.4 Future work 167

9.4 Dissemination 168

REFERENCES 170

xi

LIST OF FIGURES

Figure No. Page

1.1 The objectives answer the research questions 6

2.1 Summary of the employed approaches on course timetabling
problems

14

2.2 A great deluge algorithm (Dueck 1993) 19

2.3 A basic tabu search algorithm (Talbi 2009) 21

2.4 A simulated annealing algorithm (Aarts and Korst 1988) 24

2.5 A variable neighbourhood algorithm (Hansen et al. 2004) 26

2.6 A general genetic algorithm (Goldberg 1989) 29

2.7 A general ant colony optimization (Dorigo and Gambardella
1996)

30

2.8 A general memetic algorithm (Moscato 1999) 32

3.1 Research Design 48

3.2 The pseudo code for the construction heuristic 59

4.1 Schematic overview of Great Deluge and Tabu Search
algorithm

64

4.2 The pseudo code for the improvement algorithm

65

4.3 The pseudo code for the great deluge

67

4.4 Tabu Search algorithm framework 68

4.5 The pseudo code for the tabu search 69

4.6 Frequency of the neighbourhood structures used for small,
medium and large datasets

71

4.7 Convergences of (a) small5, (b) medium3, (c) medium5 and ,
(d) large datasets using a Great Deluge with Tabu Search
algorithms

73

xii

4.8 Box plots of the penalty costs for (a) small, (b) medium and

(c) large datasets.

74

4.9 Convergence of (a) comp01, (b) comp08, (c) DDS4, and
(d)Test2 datasets using Great Deluge with Tabu Search
algorithms

78

4.10 Box plots of penalty costs for UD1 datasets 79

4.11 Convergences of (a) comp01, (b) comp21, (c) DDS4 and (d)
Test2datasets using Great Deluge with Tabu Search
algorithms

83

4.12 Box plots of the penalty costs for UD2 datasets

84

5.1 Kampe Chain move before exchanging

89

5.2 Kampe Chain move after exchanging

90

5.3 The Great Deluge Algorithm with Kempe Chain
Neighbourhood Structure

91

5.4 The pseudo code of Round Robin Algorithm

93

5.5 Convergences of (a) small5 dataset, (b) medium3 dataset, (c)
medium5 dataset, and (d) large dataset using a Great Deluge
with Kempe Chain

95

5.6 Box plots of the penalty costs for small, medium and large
datasets

96

5.7 Convergences of (a) Comp01, (b) Comp08, (c) DDS4 and (d)
Test2 datasets using a Great Deluge with Kempe Chain

99

5.8 Box plots of the penalty costs for UD1 datasets

100

5.9 Box plots of the penalty costs for UD2 datasets

103

5.10 Convergences of (a) Comp01, (b) Comp21, (c) DDS4 and (d)
Test2 datasets using a Great Deluge with Kempe Chain

104

6.1 Dual-sequence Simulated Annealing algorithm 109

6.2 Frequency of the neighbourhood structures used on all
datasets

111

6.3 Convergences of (a) small5 dataset, (b) medium3 dataset, (c)
medium5 dataset, and (d) large dataset using a Dual sequence

113

xiii

simulated Annealing

6.4 Box plots of the penalty costs for small, medium and
large datasets

114

6.5 Convergences of (a) Comp01, (b) Comp08, (c) DDS4 and (d)
Test2 datasets using a Dual sequence simulated Annealing
algorithm

118

6.6 Box plots of the penalty costs for UD1 datasets 119

6.7 Convergences of (a) Comp01, (b) Comp21, (c) DDS4 and (d)
Test2 datasets using a Dual sequence simulated Annealing
algorithm

122

6.8 Box plots of the penalty costs for UD2 datasets 123

7.1 Representation of solutions in the search space 129

7.2 The pseudo code of Bacteria Swarm Optimisation algorithm 130

7.3 BSO algorithm 131

7.4 Differential Evolution algorithm 134

7.5 Representation of chromosome for university
course timetabling problems

134

7.6 Crossover operation 135

7.7 Convergences results of (a) small5 dataset, (b) medium3
dataset, (c) medium5 dataset, and (d) large dataset using BSO
algorithm

138

7.8 Box plots of the penalty costs for small, medium and large
datasets

139

7.9 Convergences of (a) Comp01, (b) Comp08, (c) DDS4 and (d)
Test2 datasets using a BSO algorithm

142

7.10 Box plots of the penalty costs for UD1 datasets 143

7.11 Box plots of the penalty costs for UD2 datasets 147

7.12 Convergences of (a) comp01, (b) comp21, (c) DDS4 and (d)
Test2 datasets using a BSO algorithm

148

xiv

8.1 One-tailed and two-tailed probability values of a t-test and
degree of freedom for medium1 dataset (a) probability value
for A1~A2; (b) probability value for A1~A3; (c) probability
value for A1~A4; (d) probability value for A2~A3; (e)
probability value for A2~A4; (f) probability value for A3~A4

158

8.2 One-tailed and two-tailed probability values of a t-test and
degree of freedom for comp20 dataset from UD2 datasets (a)
probability value for A1~A2; (b) probability value for
A1~A3; (c) probability value for A1~A4; (d) probability
value for A2~A3; (e) probability value for A2~A4; (f)
probability value for A3~A4

159

xv

LIST OF TABLES

Table No. Page

2.1 Summary of literature review on course timetabling problems 73

2.2 Evaluation of approaches for enrolment-based course
timetabling problems

39

2.3 Summary of literature review on curriculum-based course
timetabling problems

44

2.4 Evaluation of approaches for curriculum-based course
timetabling problems

45

3.1 The parameter for the enrolment-based course timetabling
problem

51

3.2 Curriculum-based course timetabling instances descr 52

3.3 Descriptions of the problem formulation 54

3.4 Notations used for the Curriculum-based course timetabling
problem

55

3.5 Time range (in seconds) taken to construct initial feasible
solutions

58

4.1 Comparison on different moves 71

4.2 Best results and comparison with other algorithms under a
relaxing stop condition

73

4.3 Results using Great Deluge and Tabu Search on
enrolment-based course timetabling problems

75

4.4 Best results and comparison with other algorithms 76

4.5 Results using Great Deluge and Tabu Search on Curriculum
-based course timetabling problems (UD1)

80

4.6 Best results and comparison with other algorithms 81

4.7 Results using Great Deluge and Tabu Search on Curriculum
-based Course Timetabling Problems (UD2)

85

xvi

5.1 Results Comparison 94

5.2 Results using Great Deluge with Kempe Chain on enrolment-
based course timetabling

96

5.3 Best results and comparison with other algorithms 97

5.4 Results using Great Deluge with Kempe Chain on Curriculum
-Based Course Timetabling (UD1 Dataset)

101

5.5 Best results and comparison with other algorithms 102

5.6 Results using Great Deluge with Kempe Chain on Curriculum
-Based Course Timetabling (UD2 Dataset)

105

6.1 Results Comparison 112

6.2 Results using Dual Simulated Annealing on enrolment -
based course timetabling.

115

6.3 Best results and comparison with other algorithms 116

6.4 Results using Dual- sequence Simulated Annealing on
Curriculum-Based Course Timetabling (UD1 Dataset)

120

6.5 Best results and comparison with other algorithms 121

6.6 Results using Dual-squence Simulated Annealing on
Curriculum-Based Course Timetabling (UD2 Dataset)

124

7.1 Parameters setting of BSO algorithm 136

7.2 Results Comparison 136

7.3 Results using BSO on enrolment-based
course timetabling

140

7.4 Best results and comparison with other algorithms 141

7.5 Results using Bacteria Swarm Optimization algorithm on
Curriculum-Based Course Timetabling (UD1 Dataset)

144

7.6 Best results and comparison with other algorithms 145

7.7 Results using BSO on Curriculum based
course timetabling problems (UD2)

149

8.1 Results on enrolment-based course timetabling problems 154

xvii

8.2 Results on curriculum-based course timetabling problem
(UD1)

155

8.3 Results on curriculum-based course timetabling problem
(UD2)

156

8.4 t-test and p-value comparison for the proposed algorithms 160

CHAPTER I

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Timetabling problems are considered as a specific type of scheduling problem. It is concerned

with the assignment of events to timeslots subject to constraints with the resultant solution

constituting a timetable. It is known as a NP-hard problem (Schaerf, 1999). One example of

timetabling problems is the University Course Timetabling Problem (UCTP) which is a

significant problem in higher educational institutions.

UCTP which is also sometimes known as class/teacher timetabling, refer to a set of

courses that need to be scheduled into a given number of rooms and timeslots within a week,

and at the same time, students and teachers are assigned to courses so that the meetings can take

place. Carter and Laporte (1998) defined course timetabling as:

-dimensional assignment problem in which students, teachers

(or faculty members) are assigned to courses, course sections or classes;

events (individual meetings between students and teachers)are

There are two goals involved in solving course timetabling problems. Firstly, to produce

feasible timetables while taking into consideration satisfying a number of criteria called hard

constraints. Secondly, to produce good quality timetables by reducing the

2

violations on a number of undesirable criteria called soft constraints (for more details

about the hard and soft constraints, see Chapter III). A feasible timetable is one in which

all the courses can have all of the resources (might be rooms with particular equipment,

students, and lecturers) that they require at a particular timeslot (that has been allocated to

them), of course. A good quality timetable is the one that conforms well to a number of

soft constrains that are set by the user.

Traditionally, the task of scheduling the courses in the university is carried out

manually based on trial and hit, which normally take days or weeks to find a clash free

timetable. However, sometimes a better timetable is not guaranteed. Thus, researchers in

the area of Artificial Intelligence and Operation Research have paid serious attention to

provide automated support for human timetables.

In the last few years, researchers have attempted to investigate a lot of methods to

solve university course timetabling problem (see Schaerf 1999; Burke and Petrovic 2002;

McCollum 2007; Lewis 2008; McCollum et al. 2009). Early research concentrated on

sequential heuristics and later moved to meta-heuristic approaches due to the ability of

these approaches to generate solutions which are better than those generated from

sequential heuristics alone (Schaerf 1999, Burke and Petrovic 2002)

Usually, in university course timetabling, an initial solution will be constructed

using one or more appropriate heuristics (least saturation degree, large degree or greedy

heuristic, etc) and then the improvement is carried out using meta-heuristics. However,

the performance of meta-heuristic approaches may differ from instance to other instances,

which might depend on the parameter tuning process, the neighbourhood structures and

the search algorithm itself (Burke et al. 2004). Thus, the research work presented in this

thesis is focused on controlling the selection of the neighbourhood structures and

enhancing the search algorithm by hybridising between two or more meta-heuristic

approaches to better explore the search space while finding better solutions.

3

A brief observation of the recent timetabling literature shows that most of the

hybridisation approaches have been applied successfully in the past to a number of

difficult combinatorial optimisation problems, particularly on scheduling problems. This

motivates the investigation of a hybridisation approach between meta-heuristic

approaches in order to have a benefit of the exploration and exploitation mechanism

during the search process. This thesis is derived from the interest to develop effective

automated course timetabling hybridisation techniques. These hybrid approaches are

expected to drive towards achieving better solutions and in a more effective way.

1.2 PROBLEM STATEMENT

The university course timetabling problem deals in building up a weekly course timetable

that share the timeslot and the room for each course over a given semester or year. It

involves the arrangement of courses, students, teachers and rooms at a specific number of

timeslots, respecting a certain constraints. Constraints in course timetabling problem can

be classified as hard and soft constraints. Hard constraints must be satisfied by a solution

of the problem (to generate a feasible timetable), whereas soft constraints are desirable to

be satisfied in order to obtain a good timetable (Socha et al. 2002). Examples of such hard

constraints are: teachers cannot give more than one lecture at one time, the student cannot

be assigned to more than one course at the same time, and not more than one course is

allowed to be assigned to a timeslot in each room. Examples of such hard constraints are:

student has more than two consecutive courses, and student has a single course on a day.

Note that, details description on hard and soft constraints can be found in Chapter III.

Course timetabling problem is one of major administrative activities in higher

education institutes (Burke and Petrovic 2002). These institutes spend a lot of money and

efforts just to get feasible or good timetables in a reasonable time. Most of the time, the

output is not as planned or desired. The teachers prefer to give a lectures at the beginning

Thus, to create this kind of timetable manually that tries to satisfy all preferences by

teachers and student is normally a time consuming task and need high effort from human.

4

Hence, the only solution is to automate a generation of timetables that normally take a

shorter time compared to manual. This can be considered as cost cutting effort as well.

In the universities, using good timetables became more significant in recent years

(Bykov 2003). But the lack of proper resources (e.g. number of rooms, their capacities

and availability of lecturers) create problem to the university timetabling process which

requires expensive human and computer resources for solving it. Timetables that are not

properly generated will create a negative impact to the faculties such as a class room

clashes, subject conflicts etc. Thus, efficient techniques should be available to generate a

high quality and clash free timetables.

However, satisfying 100% of the soft constraints in order to generate a high

quality timetable is a very difficult task or maybe it is impossible (Qu et al. 2009). Since a

large number of variants of the problem that differs from each other, which is based on

the categories of universities and their constraints, it is very difficult to formulate a

general problem that serve the requirements of all universities (Lewis 2008). A general

technique should include all possible aspects which can easily be simplified as the

requirements of the users. The number and type of constraints are different from one

university to others. This leads to a corresponding difference in objective functions,

which provide numerical measures of violation of these constraints.

Due to the complexity of the university course timetabling problems, and the

limitations of proposed methods in the literature, thus, solving university course

timetabling problems that are based on meta-heuristic algorithms still need more

investigations in term of the parameters used, selection of the neighbourhood structures

and the search algorithm itself.

Some of the research questions that can be pointed out are:

i. Does the hybridisation of the meta-heuristic methods can create a balance

between exploration and exploitation during the search process?

5

ii. Do the meta-heuristic methods that are employed on different search

regions contribute to a better search process?

iii. Do the small neighbourhood structures can be efficient in terms of the time

require for a search algorithm?

iv. How meta-heuristic methods can utilise simple neighbourhood structures?

v. What is the effect of using a large size neighbourhood structure compared

to small neighbourhood structures in increasing the probability of finding

high quality solutions?

vi. Does a large size neighbourhood structure helps to find feasible path

between the search space regions?

vii. Does the neighbourhood structure selection strategy helps to increase the

performance of search algorithm?

viii. How the convergence speed is affected by the population based method

operators?

1.3 RESEARCH OBJECTIVES

The overall aim of the work in this thesis is to assess the ability of hybridisation meta-

heuristic approaches in solving university course timetabling problem. This research aims

to propose a hybridisation approaches to generate good quality timetables (solutions) for

two university course timetabling problems (see Chapter III). In order to accomplish this

aim, several objectives are outlined as follows:

1. To propose a great deluge and tabu search hybrid technique with simple

neighbourhood structures.

6

2. To propose the hybridization of large size of neighbourhood structures with great

deluge algorithm.

3. To propose a new method called Dual sequence simulated annealing algorithm

with round robin algorithm in handling university course timetabling.

4. To propose a hybrid population-based approach i.e. bacteria swarm optimisation

algorithm and differential evolution algorithm to increase the ability of

exploration and exploitation process.

Figure 1.1 shows directions for each objective i.e. which objective will answer which

research questions.

Figure 1.1 The objectives answer the research questions

i. Does the hybridisation of the meta-heuristic methods can create a
balance between exploration and exploitation during the search
process?

ii. Do the meta-heuristic methods that are employed on different search
regions contribute to a better search process?

iii. Do the small neighbourhood structures can be efficient in terms of the
time require for a search algorithm?

iv. How meta-heuristic methods can utilise simple neighbourhood
structures?

v. What is the effect of using a large size neighbourhood structure
compared to small neighbourhood structures in increasing the
probability of finding high quality solutions?

vi. Does a large size neighbourhood structure helps to find feasible path
between the search space regions?

vii. Does the neighbourhood structure selection strategy helps to increase
the performance of search algorithm?

viii. How the convergence speed is affected by the population based method
operators?

Objective 1

Objective 2

Objective 3

Objective 4

7

1.4 RESEARCH SCOPE

The research focuses on the hybridisation of meta-heuristic algorithms in solving

university course timetabling problems. The proposed approaches in this thesis are

applied on standard benchmark datasets. These datasets are varied in term of size,

constraints involved and conflict density. The algorithms are tested on two sets of

standard benchmark datasets classified as enrolment-based course timetabling problems

(11 datasets), and curriculum-based course timetabling problems ITC2007-Track 3 (UD1

(32 datasets), UD2 (32 datasets)). The experimental results (with respect to the quality of

solutions) are compared against available approaches in the literature that tackled the

same problems. The performance of the algorithms is evaluated based on the results

obtained.

1.5 OVERVIEW OF THE THESIS

This thesis consists of nine chapters. This chapter presents the background and

motivation, problem statement, research objectives and scope. The remainder of this

thesis is organised as follows:

Chapter II presents the literature review of the related studies in university course

timetabling problems. It introduces the timetabling problem in general, and then

concentrates upon reviews and analyses the current published researches on this problem.

Chapter III demonstrates the methodology of the research. Three phases (i.e.

preprocessing phase, construction phase and improvement phase) of the methodology are

described. Preprocessing phase concentrates on transferring the original data into the

related data structures (matrixes). Construction phase involves in generating initial

solutions for each dataset tested in this work. Later the quality of these solutions will be

enhanced at the improvement phase. In addition, this chapter also describes the

specification of the datasets, hard and soft constraints involved, and the objective function

that is employed to measure the quality of the obtained solutions.

8

Chapter IV investigates the incorporation of the great deluge and tabu search algorithms

to solve the university course timetabling problem. It involves two experiments

(preliminary and extended). The aim of the preliminary experiment is to measure the

effectiveness of the simple neighbourhood structures used. During the search, only the

most frequently used neighbourhood structures will be used in the extended experiment

with a relaxed stop condition. Tabu search is used to prevent cycling of the some

neighbourhood structures. A used/unused strategy is used to control the selection of

neighbourhood structures.

In Chapter V, a different size of neighbourhood structures i.e. a kempe chain

neighbourhood structure is applied within the same algorithm as in Chapter IV. This is

due to the experimental analysis in Chapter IV that different size or complexity of the

problem might need different neighbourhood structures in order to help the search

algorithm to explore the search space. This helps in improving the efficiency of the

algorithm in generating better solutions. The round robin algorithm is utilised to control

the selection of the neighbourhood structures. This effectively helps the algorithm to

diversify the search process in getting better solutions.

Chapter VI presents a novel dual sequence simulated annealing approach to solve

the university course timetabling problem. The approach consists of two schemas that are

used to avoid the stagnation state. In the first schema, the worse solution is accepted if

there is no improvement after a certain number of iterations, referred as a local counter.

The second schema uses a counter, referred as a global non improvement counter to start

with a new sequence (with a new initial solution). The round robin algorithm is also

employed here to control the selection of the neighbourhood structures.

Chapter VII describes a simulation of a bacteria swarm optimisation algorithm

and applied to university course timetabling problems. The proposed algorithm simulates

the movement of bacteria through searching for nutrient in the search space. The search

space is divided into three regions based on the quality of solutions. These regions is

classified as risk region, null region and rich region. The solutions in risk region and null

9

region have to move toward rich region, and solutions in the rich region have to move

toward the best solution in the same region. Differential evolution algorithm is employed

within the bacteria swarm optimisation to direct the search toward the potential regions in

the search space.

Chapter VIII presents an analysis and evaluation of the results obtained from four

proposed improvement algorithms (as presented in Chapters IV~VII) to solve university

course timetabling problems.

Finally, the overall conclusions of the work presented in this thesis and research

directions for future work in this area are presented in Chapter IX.

CHAPTER II

OVERVIEW OF ALGORITHMIC APPROACHES TO COURSE TIMETABLING
PROBLEMS

2.1 INTRODUCTION

This chapter provides an overview of the different approaches presented in the literature to

solve the university course timetabling problems. It discusses the major purposes of these

techniques and gives an indication of further research guidelines in this area. Due to the vast

number of published work in this area, this chapter only focuses on the most significant

works in the literature.

 This chapter is organised as follows: Section 2.2 presents the general definition of

university course timetabling problem. Section 2.3 discusses a graph coloring for university

timetabling problems. Section 2.4 presents most popular techniques applied to university

course timetabling problems. Section 2.5 presents a summary of the chapter.

2.2 TIMETABLING PROBLEMS

Timetabling is one of the major issues faced by any university around the world that needs a

lot of human and computer efforts to solve. The process of timetabling deals with finding

suitable timeslots for a variety of functions with inadequate resources. This in-adequacy

creates scheduling problems. Depending on the nature of the problem, the constraints can

vary with various objectives.

11

 Wren (1996) defined timetabling as:

Timetabling is the allocation, subject to constraints, of given resources to objects

being placed in space time, in such a way as to satisfy as nearly as possible a set of

 Scheduling problems occur in many fields. One of them is called university

timetabling problems. University timetabling problems are difficult tasks faced by

educational institutions. These problems can be classified into two main categories i.e.

course timetabling and examination timetabling (Schaerf 1999). These two categories

share the same basic characteristics of the general timetabling problem but have

different constraints that are usually divided into two classes i.e. hard and soft (Burke

et al. 2004). In exam timetabling problems, a number of exams can be scheduled in

the same room at the same timeslot (providing seating-capacity constraints are not

exceeded), whilst in course timetabling problems, generally only allowed one course

per room, per timeslot (Lewis 2008). The objective is to find a viable course schedule

(feasible timetable) based on different constraints. The course scheduling and

examination scheduling problems are common in many ways and dissimilar in other

ways. One example for the common problem characteristics is that students cannot

attend two classes or two exams simultaneously. Whereas, the examination scheduling

problem may not have a fixed time period and normally is scheduled once per

semester (or per year), but all course scheduling problems are for fixed time periods

and normally based on weekly basis.

 Fox and Sadeh-Koniecpol (1990) defined the scheduling concept as follows:

Scheduling selects among alternative plans, and assigns resources and times to each

activity so that they obey the temporal restrictions of activities and the capacity

limitations of a set of shared resources

 The problem mainly occurs when trying to create a most appropriate timetable

that balances the requirements of the management, lecturers and students. The

problem is so critical that in some cases it is impossible to find even a single feasible

12

timetable. It is highly impossible to create a common model that can be used for all

the universities, as every institute has their own specific constraints and objectives.

 The later discussions only focus on course timetabling problems, which are

considered as the domain in this research work.

2.3 UNIVERSITY COURSE TIMETABLING PROBLEMS

This thesis addresses university course timetabling problems (UCTT). Where, a set of

courses are scheduled into a given number of rooms and timeslots across a period of

time. This usually takes place at the beginning of a semester also the students and

teachers will be assigned to courses so that the teaching delivery activities can take

place (Schaerf 1999). During the process of timetabling, a number of problems might

occur due to different hard and soft constraints. Basically a set of hard constraints

need to be satisfied in order to produce a feasible solution, apart from satisfying the

soft constraints as many as possible. Carter and Laporte (1998) defined course

timetabling as:

-dimensional assignment problem in which students, teachers (or

faculty members) are assigned to courses, course sections or classes; events

(individual meetings between students and teachers) are assigned to classrooms and

Laporte and Desroches (1986) presented a problem of assigning students to

course sections in a large engineering school. Carter and Laporte (1998) divided the

course scheduling problem into five sub-problems such as course timetabling, student

scheduling, class-teacher timetabling teacher assignment and classroom assignment.

In addition, Lewis et al. (2007) have summarised the university course timetabling

problem as the process of assigning lectures to a limited set of timeslots, while trying

to satisfy some constraints.

The timetabling problem can be modeled using an undirected graph (De Werra

1985). University course timetabling problems can be viewed as a graph coloring

model. Graph coloring is concerned with coloring the vertices of a given graph using a

13

given number of colors. The vertices represent the courses, the colors represent the

timeslots and the edges represent the conflicts between courses Burke et al. (2004).

Each vertex of a graph should be colored so that no two vertices that are connected by

an edge are both assigned to the same color, and normally there are a limited number

of available colors. A wide discussion on the graph coloring problem and its

relationship to timetabling can be found in (De Werra 1996b, Burke and Ross 1996,

De Werra 1997, and Burke et al. 2004).

This thesis deals with two sets of university course timetabling problems,

namely, Enrolment-Based Course Timetabling Problems (EBCTT) and Curriculum-

Based Timetabling Problems (CBCTT). The details of the specification of real-world

course timetabling problems which are used as benchmark datasets are discussed in

Chapter III along with the representation of hard and soft constraints and their

corresponding objective functions.

2.4 TECHNIQUES APPLIED TO THE UNIVERSITY COURSE
TIMETABLING PROBLEM

Various methods have been investigated to tackle university course timetabling

problems. The interested readers can refer to the comprehensive survey of the problem

in (Schaefer 1999, Burke and Petrovic 2002, Lewis 2008, and McCollum et al. 2010).

For a gap between theory and practice in the area of university timetabling will be

referred to McCollum (2006).

Carter and Laporte (1996) divided these methods into four categories such as

sequential, meta-heuristics, constraint-based and cluster methods. A few years later,

Petrovic and Burke (2004) included some other types such as case-based reasoning

techniques, multi-criteria approaches and hyper-heuristic methods. On the other hand,

Abdullah (2006) roughly classified the approaches applied on course timetabling

problems into ten categories as follows: constraint-based methods, graph-based

approaches, cluster-based methods, population-based approaches, meta-heuristic

methods, multi-criteria approaches, hyper-heuristic/self adaptive approaches, case-

based reasoning, knowledge-based and fuzzy-based approaches.

14

Figure 2.1 Summary of the employed approaches on course timetabling problems

Repair-based
heuristic

Hybrid
heuristic

Heuristic/meta
-heuristic

Heuristic Local
Search

Constraint
based

Graph
based

Meta-
heuristic

Hybrid
heuristic

Hyper-
heuristic

Population-
based

Neufeld (1974)
Selim (1988)
Burke et al (1998)
Werra (1996)
Werra (2002)
Asmuni et al (2005)

Deris et al (2000)

Zervoudakis (2001)

Legierski (2003)

Shearu et al (2009)

Galinier et al (1999)
Deris et al (1999)
Tuga et al (2007)
Sheau et al (2009)
Blesa et al (2009)
Jat & Yang (2010)
Abdullah et al (2010a)

Burke et al (2002)

Petrovic and Qu (2002)

Burke et al (2003)

Bai et al (2007)

Burke et al (2007)

Qu et al (2009)

Tabu
Search

Great
Deluge

Simulated
Annealing

Variable
Neighbourhood

Ant ColonyGenetic
Algorithm

Electromag
-netic

Harmony
Search

Dueck (1993)
Sinclair (1993)
Burke et al (2002)
Burke et al (2004)
Mcmullan (2007)
Silva et al (2008)

Costa (1994)

Schaerf (1996)

Glover et al (1997)

Schaerf (1999)

Burke et al (2003)

Alvarez et al (2002)

Gunawa et al (2007)

Abdelkarim (2008)

Kirkpatrick (1984)

Aarts et al (1988)
Kostuch (2004)
Frausto et al (2008)
Luke (2009)

Mladenovic et al (1997)
Hansen et al (2001)
Abdullah et al (2005)
Kochetov et al (2006)
Abdullah et al (2007)

Goldberg (1989)
Michalewicz (1996)
Erben et al (1996)
Grech et al (2005)
Lewis et al (2005)
Yang and Jat (2010)
Pongcharoen (2008)
Raghavjee et al (2008)
Abdullah and Turabieh
(2008)
Yue et al (2009)
Bratkovic et al (2009)

Dorigo et al (1996)
Dorigo et al (1999)
Socha et al (2002)
Rossi et al (2002)
Socha et al (2003)
Ejaz et al (2007)
Dorigo (2007)
Ayob at al (2009)

Paechter et al (1995)
Paechter et al 1998)
Moscato 1999
Tan et al 2001
Ross et al (2003)
Burke et al (2005)
Chiarandini (2006)
Abdullah et al (2007)
Jat &Yang et al(2008)
Ahn et al (2010)
Abdullah et al (2007)

Al-Betar et al (2010)

Clark et al (2008)

Muller (2009)

Burke et al (2009)

Bellio et al (2011)

Geiger (2010)

Memetic
Algorithm

Turabieh et al (2009)

Tabu
Search

Integer Programming/
Branch and cut

Fish Swarm
Optimisation

Turabieh et al (2010)

Burke et al (2011)

Cisco et al (2008)

Lü and Hao (2010)

Constraint-
based

Atsuta et al (2008)

University Course
Timetabling Problems

Enrolment-Based Curriculum-Based

15

As mentioned earlier, this chapter focuses on the Enrolment-Based Course

Timetabling Problem (EBCTT) and the Curriculum-Based Timetabling Problem

(CBCTT), which has been divided into six categories i.e. graph-based approaches,

constraint-based approaches, meta-heuristic approaches, hybridisation meta-heuristic

approaches, population-based approaches and hyper-heuristic algorithms. The

category for EBCTT is divided into four i.e. constraint based, heuristic/meta-heuristic,

hybridisation method, integer programming/branch and cut. Figure 2.1 summarises the

available methods in the literature review that have been employed on both course

timetabling problems.

2.4.1 Enrolment-Based Course Timetabling Problems

Plenty of approaches proposed in last three decades attempt to solve course

timetabling problems and specially the enrolment-based course timetabling problem

(full details about the problem can be found in Chapter III). In this section the

approaches applied on this problem are discussed.

A. Graph-based Methods

As mentioned in Section 2.3, university course timetabling problems can be viewed as

a graph coloring model where the vertices represent the courses, the colors represent

the timeslots and the edges represent the conflicts between courses.

Neufeld and Tartar (1974) implemented a graph coloring method for a class-

teacher timetabling problem. On the other hand, Selim (1988) employed a graph

coloring methodology for the faculty timetable problem where the vertices were

divided to reduce the chromatic number. The approach was tested on the real data

from the Faculty of Science of the American University in Cairo.

De Werra (1996b) applied graph coloring models for course timetabling

problems. This method has also been used by Asratian and De Werra (2002) to solve a

class-teacher problem due to its ability to handle several disjoint groups of lectures.

16

Burke et al. (1998) investigated the effect of introducing a random element in the

employment of graph coloring/timetabling heuristics by proposing two selection

approaches: 1) tournament selection and 2) bias selection. The authors tested the

proposed approaches over standard benchmark datasets. The results indicate that there

are some improvements if a backtracking process is involved in the construction of

feasible timetables.

Asmuni et al. (2005) applied a fuzzy-based algorithm to order courses based

on graph coloring heuristics. Three heuristics (saturation degree, largest degree, and

largest enrolment) have been employed. Experimental results show that this approach

able to produce good quality solutions.

B. Constraint-based Methods

There are a few papers that discuss the use of Constraint-based methods in university

course timetabling. In a constraint-based method, a problem is modeled as a set of

variables with a finite domain. The method allocates values to variables that satisfy a

number of constraints. Deris et al. (2000) formulated a timetable planning problem as

a constraint-based reasoning technique which is implemented in an object oriented

approach for colleges that involved 378 timeslots, 1673 subject sections and 10 rooms.

They have introduced some constraint categories such as time, space and dispersion

constraints. To facilitate the search for a solution, the timetabling problem is

represented as a graph tree. In order to find the solution faster, variable orderings are

introduced based on size (for example the size of the domain and the quantity of

constraints of the variables). Verified results showed that the feasible and best

solutions can be found in a reasonable time.

Zervoudakis and Stamatopoulus (2001) applied a constraint programming

object-oriented model using ILOG SOLVER C++ library for the university course

timetabling faced by the Department of Informatics and Telecommunications at the

University of Athens. The problem involved 68 lectures that need to be scheduled in

five days of nine teaching timeslots. A variety of search methods (for example depth

17

first search) and variable ordering heuristics were used in searching for near optimal

solutions.

Legierski (2003) presented a Constraint Programming approach to generate

feasible solutions for real university department timetabling data which contains 223

courses. A local search algorithm is used to find better solutions. The approach shows

promising results.

Sheau et al. (2009) investigated the constraint-based reasoning algorithm in

solving real world course timetabling problems. The approach used constraints-based

reasoning as an improvement algorithm based on the number of students for each

lecture. The proposed algorithm has been tested on the data taken from the Faculty of

Computer Science and Information System, University of Technology Malaysia and

the Faculty of Science, Ibb University, Yemen.

C. Meta-heuristic Methods

Over the last few years, meta-heuristics have proven to be highly useful for

approximately solving timetabling problems in practice. The main advantage of these

techniques is that they can handle a wide range of constraints and capable to escape

from local optima (Glover and Laguna 1993). Meta-heuristic is a computational

method that optimises a problem by repeatedly trying to improve a candidate solution

with regard to a given measure of quality (Talbi 2009).

Osman and Laporte (1996) defined meta-heuristic as:

A meta-heuristic is formally defined as an iterative generation process which guides

a subordinate heuristic by combining intelligently different concepts for exploring and

exploiting the search space, learning strategies are used to structure information in

order to find efficiently near-optimal solutions.

Later, Glover and Laguna (1997) interfused a meta-heuristic as:

18

A meta-heuristic refers to a master strategy that guides and modifies other heuristics

to produce solutions beyond those that are normally generated in a quest for local

optimality. The heuristics guided by such a meta-strategy may be high level

procedures or may embody nothing more than a description of available moves for

transforming one solution into another, together with an associated evaluation rule.

l. (1999) also gave a definition for meta-heuristic i.e.:

-heuristic is an iterative master process that guides and modifies the

operations of subordinate heuristics to efficiently produce high-quality solutions. It

may manipulate a complete (or incomplete) single solution or a collection of solutions

at each iteration. The subordinate heuristics may be high (or low) level procedures, or

In 2005, a new definition of meta-heuristic appareled in Meta-heuristic

Network Website:

-heuristic is a set of concepts that can be used to define heuristic methods that

can be applied to a wide set of different problems. In other words, a meta-heuristic

can be seen as a general algorithmic framework which can be applied to different

optimisation problems with relatively few modifications to make them adapted to a

A lot of the meta-heuristic methods are employed on university course

timetabling problems. The interested readers can refer to Lewis (2008) for more

detailed description of the different meta-heuristic approaches (like Great Deluge,

Tabu Search, Simulated Annealing, etc) published in the past few years.

 The following subsections present the literature review on meta-heuristic

algorithms that have been applied on the enrolment-based course timetabling problem.

19

Great Deluge

Dueck (1993) proposed a new meta-heuristic algorithm called as Great Deluge. Great

Deluge is classified as a variant of simulated annealing algorithm. Great deluge

depends on two parameters i.e. the estimate of the quality of solution that a user

requires and the computational time (Burke et al.

2004). Improving solutions are always accepted. A non improving solution is

adaptively accepted if its objective function is less than or equal to some given upper

boundary value level in the paper by Dueck (1993)) for a minimisation

case. level

constant where is a decay rate.

Figure 2.2 A great deluge algorithm (Dueck 1993)

Figure 2.2 shows the pseudo-code of the standard Great Deluge. After

initialisation the parameters (initial solution, Sol, initial water level, level, and the

decay rate). The algorithm starts iteratively generate a neighbourhood solution, Sol*,

by modifying the initial solution, Sol. If there is an improvement, the neighbourhood

solution will be accepted and replaced with Sol, Sol=Sol*. A worse solutions can be

accepted if the quality of neighbourhood solution is less than or equal to level. Sol will

Great Deluge
Begin
 Sol:=initial solution;
 Set initial water level, level;
 Set final water level, Lfinal;

 Do while (stopping criterion)
 generate an Sol* N(s);
 if
 Sol=Sol*;
 level = level-
 else
 if level
 Sol=Sol*;
 end do;
end;

20

be updated and level = level- This process is repeated for a pre-determined number

of iteration.

Burke et al. (2002) applied the great deluge algorithm to course timetabling by

means of 20 instances of the International Timetabling Competition 2002 which was

sponsored by PATAT IV conference in 2003. The proposed technique is proved to be

effective and was able to obtain 8 best known results of the 23 datasets. These results

represented the third among 21 participants.

Burke et al. (2004) applied a great deluge to solve standard benchmark

datasets. In this work, authors investigated two parameters that affect the performance

of great deluge algorithm such as an execution time and a level of solution quality.

The experimental results show that the great deluge algorithm is able to obtain a

number of best known results. At the time of the algorithm was proposed, it was able

to obtain 7 new results out of 20. Finally, the authors showed that in the great deluge

algorithm only one parameter needs to be defined, i.e. the amount of the available

search time, whilst the level of solution quality is taken from the initial solution.

Moreover, they reported that the better results can be obtained by more execution time

spent.

McMullan (2007) introduced an extended version of great deluge algorithm for

Enrolment-based course timetabling problems. The approach focuses on the main

parameter which is the decay rate as it dictates how fast the boundary is reduced and

ultimately the condition for accepting worse moves is narrowed. The approach uses a

decay rate proportional to 50% of the entire run to force the algorithm to reach the

optimal solution. The algorithm is able to obtain solutions in a relatively short amount

of time and managed to get 60% improvement on some cases when compared to the

best known results in the literature.

Landa-Silva and Obit (2008) employed a great deluge with non-linear decay

rate on the eleven benchmark course instances introduced by Socha et al. (2002). The

algorithm is an extension of the original great deluge algorithm proposed by Dueck

(1993). The difference is that the decompose rate changes on every iteration based on

21

the current water level but in the original great deluge it is preset. Experimentation

reveals that the algorithm is capable of producing new best known results on 4 out of

the 11 tested instances.

Tabu Search.

One of the most popular meta-heuristic algorithms is Tabu Search, which is proposed

by Glover (1986). Glover and Laguna (1997) introduced tabu search as:

A meta-heuristic that guides a local heuristic search procedure to explore the

solution space beyond local optimality

The basic idea of tabu search is to explore feasible regions of search space by a

sequence of moves. Thus, it can escapes from local optima. Tabu list, Tl (can be short

or long term memory) contains some forbidden moves to prevent cycling of

neighbouring solutions. An aspiration criterion can also be used which change

forbidden move to non forbidden if it results in a solution that has an objective value

better than the best solution found so far.

Figure 2.3 A basic tabu search algorithm (Talbi 2009)

Figure 2.3 illustrates a basic tabu search algorithm for a minimisation problem,

where Tl is subset of moves contributed generating Sol* and N(s) represents the set of

Tabu Search
Begin
 Sol:=initial solution;
 Set Sol as a trail solution;
 Set Solbest as best solution;
 Set tabu list length;
 repeat
 give N(s), tabu list Tl, aspiration criterion, generate an Sol*;
 find the best Sol*;
 insert moves generated Sol* in Tl;
 if f(Sol*) < f(Solbest then Solbest=Sol* and Sol=Sol*;
 update Tl;

 until (stopping criterion);
end;

22

neighbouring solutions. Tabu search start with initial solution, Sol, then initialise the

tabu parameters, tabu list length, Tl. Next, several neighborhoods solutions,

N(s), of the current solution are evaluated. The best non-tabu neighbor solutions is

accepted and added into tabu list Tl. However, it is already in the tabu list, it can be

accepted if its objective function is better than the best one found so far (aspiration

criterion). Then next, update the best solutions (Solbest).

Since 1986 up to date, the concept of tabu search has been applied in both

artificial intelligence and optimisation fields. In addition, Tabu Search algorithm has

been successfully applied to university course timetabling problems. The first

implementation for real university course timetabling problem using tabu search

algorithm was by Glover and Laguna (1993). The results reported were good.

Tabu search was improved by many researchers to become one of the

preferred solution approaches (Glover and Laguna 1997). Later, Costa (1994) applied

two tabu lists, where the first list is for courses and the second list is used to keep

track the history of courses and timeslots. This mechanism leads to control the

movement of generating the new solutions, i.e. if a course is already inserted into the

first tabu list; this indicates that it cannot be used in generating a solution. The second

tabu list controls the assignment of timeslots to courses, as the timeslot cannot be

assigned for a course while this pair of course and timeslot is inside the second tabu

list. A weight mechanism is used to enhance the diversification through the search

process. Although this approach obtained good results, but several parameters need to

be fine tuned such as tabu list size and weights.

A variable tabu list size has been applied to solve a large high school

timetabling problem by Schaerf (1996, 1999). The author inserts each applied move to

a tabu list. The weakness of this algorithm is that the size of tabu list is randomly

selected. However, experimental results show that this approach is able to schedule

most of the courses, thus obtaining better results than the results obtained by manual

scheduling.

71

that have been used by the great deluge proposed algorithm for all datasets. The x-axis

represents the dataset while the y-axis represents the frequency of the neighbourhood

structures employed throughout the search. It can be clearly seen that in most of small

and medium instances, neighbourhood structures Nbs2 and Nbs3 are the most popular

structures used, whereas the popular structures for the large dataset are Nbs1 and Nbs2.

This shows that different size or complexity of the problem might need different

neighbourhood structures in order to help the search algorithm to explore the search

space. It is also evident that some neighbourhood structures do not contribute much to

obtain a good quality solution (with respect to the objective function).

Figure 4.6.(a), (b) Frequency of the neighbourhood structures used for small, medium
and large datasets

Table 4.1 shows the results comparison on different neighbourhood structures when

applied to the great deluge algorithm for 100,000 iterations. The preliminary results

demonstrate that by using 2 neighbourhood structures, the algorithm is still able to

achieve better results than 4 neighbourhood structures on all of the cases. Less number of

good neighbourhood structures still able to help the algorithm to find better solutions as

the algorithm have extra time to explore the search space.

Table 4.1 Comparison on different moves

Data set Initial
solution

The algorithm
with 4 Nbs

The algorithm with a set of
2 Nbs

small1 266 0 0

small2 225 0 0

(a

Nbs1

Nbs2

Nbs3

Nbs4

(b

Nbs1

Nbs2

Nbs3

Nbs4

72

B. Results under More Computational Resources

In this experiment, the potential of the search process is carried out by the algorithm with

a relaxed stop condition. For this purpose, the termination criterion is set as 200000

iterations with a different set of moves, as presented in the preliminary experiment. The

best results out of 11 runs obtained are presented. Table 4.2 shows the comparison of the

approach in this work with other available approaches in the literature on all instances. In

methods a , that mean there are many

methods proposed by many authors obtained zero penalty cost for the small datasets (i.e.

Genetic algorithm and local search by Abdullah and Turabieh (2008), Randomised

iterative improvement algorithm by Abdullah et al. (2007a), Graph hyper heuristic by

Burke et al. (2007a), Variable neighbourhood search with tabu by Abdullah et al. (2005),

Hybrid evolutionary approach by Abdullah et al. (2007b), Non linear great deluge by

Landa-Silva and Obit (2008), The fuzzy multiple heuristic algorithm by Asmuni et al.

(2005), The max-min ant algorithm by Socha et al. (2002), and The tabu hyper-heuristics

by Burke et al. (2003b)).

Note that the best results are presented in bold. It can be seen that the proposed

approach in this work has better results on all datasets except for the large dataset.

small3 289 0 0

small4 209 0 0

small5 382 0 0

medium1 957 186 182

medium2 896 225 202

medium3 957 226 223

medium4 835 178 170

medium5 711 167 135

large 1613 980 845

73

Table 4.2. Best results and comparison with other algorithms under a relaxing stop
condition

Figure 4.7 Convergences of (a) small5, (b) medium3, (c) medium5 and , (d) large
datasets using a Great Deluge with Tabu Search algorithms

Figures 4.7 (a), (b), (c) and (d) show the convergence of the search process for

 Dataset

Great Deluge with
Tabu search Best Known results

Penalty
 cost

 Penalty
 cost

Method Author

 small1 0 0 Many methods Many authors
 small2 0 0 Many methods Many authors
 small3 0 0 Many methods Many authors
 small4 0 0 Many methods Many authors
 small5 0 0 Many methods Many authors
 medium1 78 80 Great Deluge McMullan (2007)
 medium2 92 105 Great Deluge McMullan (2007)
 medium3 135 135 Electromagnetic Turabieh et al. (2009)
 medium4 75 79 Electromagnetic Turabieh et al. (2009)
 medium5 68 73 Harmony search Al-Betar et al. (2010)
 large 556 424 Harmony search Al-Betar et al. (2010)

(a) (b)

(c) (d)

small5 medium3

medium5 large

Number of Iterations Number of Iterations

Number of Iterations Number of Iterations

74

medium3, medium5 and large datasets. The x-axis represents the number of iterations,

while the y-axis represents the penalty cost. It can be seen from the figures that the

penalty cost decreases toward the optimal value which is zero. The penalty cost can be

quickly reduced at the beginning of the search. This is due to the fact that at the

beginning of the search process, the search space is explored more than at the end, which

helps to increase the diversity of the search and gives a greater chance to find better

solutions.

 Figure 4.8 Box plots of the penalty costs for (a) small, (b) medium and (c) large
 datasets.

Figure 4.8 shows the box plots of the penalty cost when solving small, medium

and large instances, respectively. The results for the large dataset are most consistent

(less dispersed) compared to medium and small datasets (worse dispersed case in these

experiments). We believe that the neighbourhood structures (Nbs1 and Nbs2) that are

applied to the large dataset are able to force the search algorithm to diversify its

exploration in the solution space by moving from one neighbourhood structure to another

even though there may be fewer and more sparsely distributed solution points in the

solutions space since too many courses are conflicting with each other. When we

compare between small and medium datasets, Figure 4.8 (b) shows less dispersion of

solution points compared to Figure 4.8 (a). Again, applying the same neighbourhood

structures (Nbs2 and Nbs3) for both instances most likely does not result in similar

 (a) (b)

 (c)

75

behaviour of the search algorithm. This is supported by Figure 4.8 (a) where the

dispersion of solution points for small datasets is not consistent from one to another. For

example, small2 in Figure 4.8 (a) shows worse dispersion compared to small4. From

these experiments, we believe that the size of the search space may not be dependent on

the problem size due to the fact that the dispersion of solution points are significantly

different from one to another, even though the problems are from the same group of

datasets with the same parameter values.

It is believed that evaluating results is an important part of research. The standard

deviation (StD) is used to evaluate the results in this thesis. It is a widely used

measurement of diversity used in statistics theory. It shows how much dispersion there is

from the average. A low standard deviation indicates that the results tend to be very close

to the average whereas high standard deviation indicates that the results are spread out

over a large range of values.

Here, the best, average and worst results out of 11 runs obtained are presented.

Table 4.3 shows the best, and average and maximum (Max) of each datasets and also the

standard deviation (StD) for all datasets. As shown in Table 4.3, there is a wide range of

StD values. For small datasets the StD values are between 0 and 1.5. Note that even the

value of the StD is small, that normally represents a less dispersion on the solutions. For

medium and large datasets, these imply a big dispersion between the solutions. From this,

it can be concluded that the proposed algorithm here works well for the small datasets

only, but not on larger size of datasets. Thus, motivate to further investigate either the

neighbourhood structures or the search algorithm can be modified to tackle this

drawback. This will be carried out in the next chapter (Chapter VI)

Table 4.3 Results using Great Deluge and Tabu Search on
 enrolment-based course timetabling problems

Datasets Best Average Max StD

small1 0 2 2 0.75
small2 0 1.2 4 1.44
small3 0 1.8 3 1.03
smalll4 0 1 2 0.83

76

4.3.2 Curriculum-Based Course Timetabling Problem

A. UD1 Dataset

The Curriculum-based timetabling problem consists of the weekly scheduling of lectures

for several university courses within a given number of rooms and time periods, where

conflicts between courses are set according to the curricula of the university.

Here, only the three first soft constraints outlined in Section 3.3.2 are taken into

consideration, as in formulation of curriculum-based course timetabling problems Track

3 UD1 datasets (De Cesco et al. 2008). Table 4.4 shows the results obtained and

comparison with the best known solutions. We also compared our results with the best

uploaded to the Curriculum-Based Course Timetabling (CBCTT) website1.

Table 4.4 Best results and comparison with other algorithms.

1 http://tabu.diegm.uniud.it/ctt/

 Continue
small5 0 0.6 2 0.68
medium1 78 132.2 174 31.33
medium2 92 114.6 124 10.64
medium3 135 162.0 180 13.46
medium4 75 111.2 160 24.93
medium5 68 113.1 160 34.33
large 556 738.6 835 74.48

Dataset
Great Deluge

with Tabu
search

Abdullah et
al. (2009)

Cesco et
al. (2008)

Best
uploaded

to CBCTT

Method
applied

 Best Ave. Best Ave.

comp01 4 4.72 4 6.8 4 4 Tabu Search
comp02 22 33.6 20 27.6 35 20 Tabu Search
comp03 47 31.09 41 48.3 52 38 Tabu Search
comp04 21 23.7 20 21.3 21 18 Tabu Search
comp05 261 264.7 235 237.8 244 219 Tabu Search

77

The best results out of 11 runs obtained are presented. Note that, the best results

(including the results uploaded to CBCTT) are presented in bold. Also, note that the

results in italic represent the best result appeared in the literature. It can be seen that, this

approach is able to produce solutions with the lowest penalty cost (with respect to the

comp06 38 39.3 24 24 27 16
Mathematical
programming

comp07 10 11.2 12 13.2 13 3
 Mathematical
 Programming

comp08 22 22.3 22 22.8 24 20
 Mathematical
 Programming

comp09 73 74.9 71 75.2 61 54 Tabu Search

comp10 14 15.3 13 14.8 10 2
 Mathematical
 Programming

comp11 0 0 0 5.8 0 0 Tabu Search
comp12 297 300.6 261 265.1 268 239 Tabu Search
comp13 51 55.8 67 69.3 38 32 Tabu Search
comp14 34 36 36 36 30 27 Tabu Search
comp15 69 69.3 39 34.2 46 38 Tabu Search
comp16 50 50.5 30 30 28 16 Tabu Search
comp17 49 49.7 35 37.4 44 34 Tabu Search
comp18 82 82.9 39 45.2 41 34 Tabu Search
comp19 40 45.6 41 47.1 36 32 Tabu Search
comp20 49 50.2 19 19 25 2 Tabu Search
comp21 69 78.9 88 109.2 69 43 Tabu Search

DDS1 87 88.3 238 39
Mathematical

 Programming

DDS2 0 0 0 0 Tabu Search
DDS3 0 2.0 0 0 Tabu Search
DDS4 16 18.1 233 16 Tabu Search
DDS5 0 0.6 0 0 Tabu Search

DDS6 0 1.6 5 0
Mathematical
programming

DDS7 0 3.36 0 0 Tabu Search
 Test1 212 215.8 214 212 Tabu Search
 Test2 8 9.36 8 8 Tabu Search
 Test3 40 46.5 36 35 Tabu Search

Test4 64 70.9 43 27
 Mathematical
 programming

78

objective function) on comp01, comp07, comp08, comp11, comp21, DDS1- DDS7, Test1

and Test2 datasets. Generally, in most of the cases, the results presented here are

comparable to the performance of Tabu Search (Cesco et al. 2008), Mathematical

Programming approach, Genetic Algorithm, and Sequential Local Search algorithms

proposed by Abdullah et al. (2009).

Figure 4.9 (a), (b), (c) and (d) show the performance of the algorithm when

exploring the search space on comp01, comp08, DDS4, and Test2 datasets, respectively.

Again the x-axis represents the number of iterations, while the y-axis represents the

penalty cost. The distribution of points in these diagrams shows the correlation between

the number of iterations and the overall solution quality. An analysis of the diagrams

shows that there is a trend of the cost improvement as the number of iterations increases.

However, as the number of iterations increases, the slope of the curves illustrates the fast

improvement on the quality of solutions at the beginning of the search in all figures

where there is possibly many room for improvement. The fast improvement becomes less

pronounced towards the end of the search.

Figure 4.9 Convergence of (a) comp01, (b) comp08, (c) DDS4, and (d) Test2
datasets using Great Deluge with Tabu Search algorithms

(b)

(c) (d)

(a)

comp01 comp08

DDS4 Test2

Number of Iterations Number of Iterations

Number of Iterations Number of Iterations

79

Figure 4.10 shows the box plot of the penalty cost on some of the instances in the UD1

problem considered in this experiment. The results for comp01, comp03, comp13,

comp21, DDS4, Test2 and Test3 datasets as in Figure 4.10 show a less dispersion of

solution points where the median, the best and the worst are closed to each other. For the

DDS2 dataset, there is no dispersion at all, which show the robustness of the algorithm

especially when tested on DDS2 dataset. In addition, the median is closed to the best

solution compared to the worst (max) on comp02, comp04, comp06, comp09, comp11,

comp14, comp15, comp20, DDS3, DDS5 and Test1 datasets. This means that 60% of

solutions are closed to the best solution. Therefore, we can say that our algorithm is

robust and able to produce better solutions on UD1 datasets.

Figure 4.10 Box plots of penalty costs for UD1 datasets.

80

Table 4.5 summarises the results out of 11 runs obtained under curriculum-based course

timetabling problems (UD1 datasets). The best, average, maximum (Max), and the

standard deviation (StD) for all datasets are presented. As shown in the Table 4.5, there is

less dispersion on the obtained solutions for almost three-quarter of the datasets, where

the StD values are between 1 and 2. From this, it can be concluded that the proposed

algorithm here is very effective for most of UD1 datasets.

 Table 4.5 Results using Great Deluge and Tabu Search on Curriculum
-based course timetabling problems (UD1)

Datasets Best Average Max StD

comp01 4 4.72 6 0.8202
comp02 22 33.6 50 9.4638
comp03 47 31.09 61 5.48386
comp04 21 23.7 48 6.81842
comp05 261 264.7 270 3.29738
comp06 38 39.3 41 0.89442
comp07 10 11.2 12 0.87386
comp08 22 22.3 23 0.52223
comp09 73 74.9 78 1.80403
comp10 14 15.3 16 0.70064
comp11 0 0 0 0
comp12 297 300.6 333 15.6716
comp13 51 55.8 62 3.75136
comp14 34 36.0 37 1.22102
comp15 69 69.3 70 0.50452
comp16 50 50.5 51 0.46709
comp17 49 49.7 51 0.8202
comp18 82 82.9 84 0.75075
comp19 40 45.6 46 1.75809
comp20 49 50.2 52 1.12006
comp21 69 78.9 99 7.64555

 DDS1 87 88.3 90 1.12006
 DDS2 0 0 0 0
 DDS3 0 2.0 3 1.39841
 DDS4 16 18.1 22 1.90215
 DDS5 0 0.6 1 0.52223
 DDS6 0 1.6 3 1.12006
 DDS7 0 3.36 7 2.65603

