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ABSTRACT 
 

 

University course timetabling problem represents an NP-hard optimisation problem. It 
deals with an assignment of events and resources to timeslots and rooms while 
satisfying various constraints. The key problem associated with course timetabling 
problems is to find a high quality timetable. However, it is typically a difficult and 
time consuming task due to the size of the problem and satisfying all hard constrains 
while minimising the soft constrains violations as far as possible. The aim of the 
research represented in this thesis is to provide effective approaches for finding good 
quality solutions for university course timetabling. This has been achieved via a 
number of meta-heuristic approaches. The research first highlights a hybridisation 
approach with the aim integrating of the mechanism of Great Deluge Algorithm with 
the mechanism of Tabu Search Algorithm using number of neighbourhood structures. 
Next, the research investigates a different neighbourhood structure i.e. a Kempe Chain 
neighbourhood structure that is employed within the Great Deluge algorithm with an 
assumption that Kempe Chain neighbourhood structures can help in obtaining better 
solutions during the search process. The selection of the neighbourhood structures is 
later been controlled using a Round Robin algorithm, where each neighbourhood 
structure is given a time slice to be employed. This mechanism is embedded in a novel 
Dual Simulated Annealing algorithm. All of the algorithms discussed above are 
single-based solution approaches. The final algorithm investigated in this thesis is the 
ability of the hybridisation of population-based approach (Bacteria Swarm 
Optimisation Algorithm). This uses small neighbourhood structures with a Deferential 
Evaluation Algorithm in order to explore the search space while looking for better 
solutions. The performance of each algorithm is tested on the standard enrolment-
based course timetabling problems and the curriculum-based international timetabling 
competition (ITC2007) datasets. Computational results show that in most of the cases, 
the presented approaches significantly outperform other available techniques on the 
established benchmark course timetabling problems. 
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ABSTRAK 
 
 

Masalah penjadualan waktu kursus universiti merupakan masalah pengoptimuman 
NP-Sukar. Masalah ini melibatkan proses pengumpukan kursus kepada waktu kursus 
dan bilik kuliah dengan mempertimbangkan beberapa kekangan keras. Masalah utama 
dengan penjadualan waktu adalah untuk mencari jadual yang berkualiti tinggi. Walau 
bagaimanapun, ia merupakan suatu tugas yang sukar dan memerlukan masa yang lama 
untuk diselesaikan disebabkan oleh saiz masalah, cubaan mematuhi kekangan wajib 
dan meminimikan perlanggaran kekangan pilihan. Matlamat penyelidikan ini adalah 
untuk menyediakan pendekatan yang efektif untuk menyelesaikan masalah 
penjadualan jadual waktu kursus universiti. Matlamat ini telah dicapai melalui 
beberapa pendekatan meta-heuristik. Penyelidikan ini dimulakan dengan 
pembangunan pendekatan hibrid iaitu pendekatan Great Deluge diintegrasikan dengan 
algoritma Tabu Search menggunakan struktur kejiiranan yang kecil. Ini dikuti dengan 
penyelidikan sturuktur kejiranan Kempe Chain yang diguna pakai bersama dengan 
pendekatan Great Deluge dengan andaian struktur kejiranan Kempe Chain berupaya 
membantu mendapatkan penyelesaian yang lebih baik semasa proses carian. 
Pemilihan struktur kejiranan kemudiannya dikawal oleh algoritma Round Robin. 
Setiap struktur kejiranan diumpukkan tempoh masa untuk digunakan. Mekanisma ini 
diimplementasikan bersama dengan algoritma Dual Simulated Annealing. Kesemua 
algoritma yang dibincangkan di atas adalah pendekatan berasaskan penyelesaian-
tunggal. Sumbangan terakhir adalah untuk menyelidik keupayaan menghibridisasikan 
pendekatan berasaskan populasi iaitu Bacteria Swarm Optimization yang 
menggunakan struktur kejiranan yang kecil dengan algoritma Deferential Evaluation 
dalam meneroka ruang carian bagi mendapatkan penyelesaian yang lebih baik. 
Prestasi setiap algoritma diuji pada masalah piawai penjadualan waktu kursus 
berasaskan enrolmen dan set data pertandingan penjadualan antarabangsa berasaskan 
kurikulum (ITC2007). Dalam kebanyakan kes, keputusan ekperimen menunjukkan 
prestasi pendekatan yang dicadangkan adalah lebih baik berbanding pendekatan lain 
dalam masalah penjadualan waktu kursus. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 

1.1 BACKGROUND AND MOTIVATION 

 

Timetabling problems are considered as a specific type of scheduling problem. It is concerned 

with the assignment of events to timeslots subject to constraints with the resultant solution 

constituting a timetable. It is known as a NP-hard problem (Schaerf, 1999). One example of 

timetabling problems is the University Course Timetabling Problem (UCTP) which is a 

significant problem in higher educational institutions.  

 

UCTP which is also sometimes known as class/teacher timetabling, refer to a set of 

courses that need to be scheduled into a given number of rooms and timeslots within a week, 

and at the same time, students and teachers are assigned to courses so that the meetings can take 

place. Carter and Laporte (1998) defined course timetabling as:  

 

-dimensional assignment problem in which students, teachers 

(or faculty members) are assigned to courses, course sections or classes; 

events (individual meetings between students and teachers)are 

 

 

There are two goals involved in solving course timetabling problems. Firstly, to produce 

feasible timetables while taking into consideration satisfying a number of criteria called hard 

constraints. Secondly, to produce good quality timetables by reducing the 
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violations on a number of undesirable criteria called soft constraints (for more details 

about the hard and soft constraints, see Chapter III). A feasible timetable is one in which 

all the courses can have all of the resources (might be rooms with particular equipment, 

students, and lecturers) that they require at a particular timeslot (that has been allocated to 

them), of course. A good quality timetable is the one that conforms well to a number of 

soft constrains that are set by the user.  

 

Traditionally, the task of scheduling the courses in the university is carried out 

manually based on trial and hit, which normally take days or weeks to find a clash free 

timetable. However, sometimes a better timetable is not guaranteed. Thus, researchers in 

the area of Artificial Intelligence and Operation Research have paid serious attention to 

provide automated support for human timetables. 

 

In the last few years, researchers have attempted to investigate a lot of methods to 

solve university course timetabling problem (see Schaerf 1999; Burke  and Petrovic 2002; 

McCollum 2007; Lewis 2008; McCollum et al. 2009). Early research concentrated on 

sequential heuristics and later moved to meta-heuristic approaches due to the ability of 

these approaches to generate solutions which are better than those generated from 

sequential heuristics alone (Schaerf 1999, Burke and Petrovic 2002)  

 

Usually, in university course timetabling, an initial solution will be constructed 

using one or more appropriate heuristics (least saturation degree, large degree or greedy 

heuristic, etc) and then the improvement is carried out using meta-heuristics. However, 

the performance of meta-heuristic approaches may differ from instance to other instances, 

which might depend on the parameter tuning process, the neighbourhood structures and 

the search algorithm itself (Burke et al. 2004). Thus, the research work presented in this 

thesis is focused on controlling the selection of the neighbourhood structures and 

enhancing the search algorithm by hybridising between two or more meta-heuristic 

approaches to better explore the search space while finding better solutions.  
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A brief observation of the recent timetabling literature shows that most of the 

hybridisation approaches have been applied successfully in the past to a number of 

difficult combinatorial optimisation problems, particularly on scheduling problems. This 

motivates the investigation of a hybridisation approach between meta-heuristic 

approaches in order to have a benefit of the exploration and exploitation mechanism 

during the search process. This thesis is derived from the interest to develop effective 

automated course timetabling hybridisation techniques. These hybrid approaches are 

expected to drive towards achieving better solutions and in a more effective way. 

 

1.2 PROBLEM STATEMENT 

 

The university course timetabling problem deals in building up a weekly course timetable 

that share the timeslot and the room for each course over a given semester or year. It 

involves the arrangement of courses, students, teachers and rooms at a specific number of 

timeslots, respecting a certain constraints. Constraints in course timetabling problem can 

be classified as hard and soft constraints. Hard constraints must be satisfied by a solution 

of the problem (to generate a feasible timetable), whereas soft constraints are desirable to 

be satisfied in order to obtain a good timetable (Socha et al. 2002). Examples of such hard 

constraints are: teachers cannot give more than one lecture at one time, the student cannot 

be assigned to more than one course at the same time, and not more than one course is 

allowed to be assigned to a timeslot in each room. Examples of such hard constraints are: 

student has more than two consecutive courses, and student has a single course on a day. 

Note that, details description on hard and soft constraints can be found in Chapter III. 

 

Course timetabling problem is one of major administrative activities in higher 

education institutes (Burke and Petrovic 2002). These institutes spend a lot of money and 

efforts just to get feasible or good timetables in a reasonable time. Most of the time, the 

output is not as planned or desired. The teachers prefer to give a lectures at the beginning 

Thus, to create this kind of timetable manually that tries to satisfy all preferences by 

teachers and student is normally a time consuming task and need high effort from human. 
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Hence, the only solution is to automate a generation of timetables that normally take a 

shorter time compared to manual. This can be considered as cost cutting effort as well. 

 

In the universities, using good timetables became more significant in recent years 

(Bykov 2003). But the lack of proper resources (e.g. number of rooms, their capacities 

and availability of lecturers) create problem to the university timetabling process which 

requires expensive human and computer resources for solving it. Timetables that are not 

properly generated will create a negative impact to the faculties such as a class room 

clashes, subject conflicts etc. Thus, efficient techniques should be available to generate a 

high quality and clash free timetables.  

 

However, satisfying 100% of the soft constraints in order to generate a high 

quality timetable is a very difficult task or maybe it is impossible (Qu et al. 2009). Since a 

large number of variants of the problem that differs from each other, which is based on 

the categories of universities and their constraints, it is very difficult to formulate a 

general problem that serve the requirements of all universities (Lewis 2008).  A general 

technique should include all possible aspects which can easily be simplified as the 

requirements of the users. The number and type of constraints are different from one 

university to others. This leads to a corresponding difference in objective functions, 

which provide numerical measures of violation of these constraints. 

 

Due to the complexity of the university course timetabling problems, and the 

limitations of proposed methods in the literature, thus, solving university course 

timetabling problems that are based on meta-heuristic algorithms still need more 

investigations in term of the parameters used, selection of the neighbourhood structures 

and the search algorithm itself.  

 

Some of the research questions that can be pointed out are: 

 

i. Does the hybridisation of the meta-heuristic methods can create a balance 

between exploration and exploitation during the search process?  
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ii. Do the meta-heuristic methods that are employed on different search 

regions contribute to a better search process? 

 
iii. Do the small neighbourhood structures can be efficient in terms of the time 

require for a search algorithm? 

 
iv. How meta-heuristic methods can utilise simple neighbourhood structures? 

 
v. What is the effect of using a large size neighbourhood structure compared 

to small neighbourhood structures in increasing the probability of finding 

high quality solutions? 

 
vi. Does a large size neighbourhood structure helps to find feasible path 

between the search space regions? 

 
vii. Does the neighbourhood structure selection strategy helps to increase the 

performance of search algorithm? 

 
viii. How the convergence speed is affected by the population based method 

operators?  

 

1.3 RESEARCH OBJECTIVES  

 

The overall aim of the work in this thesis is to assess the ability of hybridisation meta-

heuristic approaches in solving university course timetabling problem. This research aims 

to propose a hybridisation approaches to generate good quality timetables (solutions) for 

two university course timetabling problems (see Chapter III). In order to accomplish this 

aim, several objectives are outlined as follows: 

 

1. To propose a great deluge and tabu search hybrid technique with simple 

neighbourhood structures. 
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2. To propose the hybridization of large size of neighbourhood structures with great 

deluge algorithm. 

 

3. To propose a new method called Dual sequence simulated annealing algorithm 

with round robin algorithm in handling university course timetabling. 

 

4. To propose a hybrid population-based approach i.e. bacteria swarm optimisation 

algorithm and differential evolution algorithm to increase the ability of 

exploration and exploitation process.  

 

Figure 1.1 shows directions for each objective i.e. which objective will answer which 

research questions. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 1.1 The objectives answer the research questions 

 

i. Does the hybridisation of the meta-heuristic methods can create a 
balance between exploration and exploitation during the search 
process? 

ii. Do the meta-heuristic methods that are employed on different search 
regions contribute to a better search process? 

iii. Do the small neighbourhood structures can be efficient in terms of the 
time require for a search algorithm? 

iv. How meta-heuristic methods can utilise simple neighbourhood 
structures? 

v. What is the effect of using a large size neighbourhood structure 
compared to small neighbourhood structures in increasing the 
probability of finding high quality solutions? 

vi. Does a large size neighbourhood structure helps to find feasible path 
between the search space regions? 

vii. Does the neighbourhood structure selection strategy helps to increase 
the performance of search algorithm? 

viii. How the convergence speed is affected by the population based method 
operators?  

Objective 1  

Objective 2  

Objective 3  

Objective 4  
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1.4 RESEARCH SCOPE 

 

The research focuses on the hybridisation of meta-heuristic algorithms in solving 

university course timetabling problems. The proposed approaches in this thesis are 

applied on standard benchmark datasets. These datasets are varied in term of size, 

constraints involved and conflict density. The algorithms are tested on two sets of 

standard benchmark datasets classified as enrolment-based course timetabling problems 

(11 datasets), and curriculum-based course timetabling problems ITC2007-Track 3 (UD1 

(32 datasets), UD2 (32 datasets)). The experimental results (with respect to the quality of 

solutions) are compared against available approaches in the literature that tackled the 

same problems. The performance of the algorithms is evaluated based on the results 

obtained.  

 

1.5 OVERVIEW OF THE THESIS  

 

This thesis consists of nine chapters. This chapter presents the background and 

motivation, problem statement, research objectives and scope. The remainder of this 

thesis is organised as follows: 

 
Chapter II presents the literature review of the related studies in university course 

timetabling problems. It introduces the timetabling problem in general, and then 

concentrates upon reviews and analyses the current published researches on this problem. 

 
Chapter III demonstrates the methodology of the research. Three phases (i.e. 

preprocessing phase, construction phase and improvement phase) of the methodology are 

described. Preprocessing phase concentrates on transferring the original data into the 

related data structures (matrixes). Construction phase involves in generating initial 

solutions for each dataset tested in this work. Later the quality of these solutions will be 

enhanced at the improvement phase. In addition, this chapter also describes the 

specification of the datasets, hard and soft constraints involved, and the objective function 

that is employed to measure the quality of the obtained solutions. 
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Chapter IV investigates the incorporation of the great deluge and tabu search algorithms 

to solve the university course timetabling problem. It involves two experiments 

(preliminary and extended). The aim of the preliminary experiment is to measure the 

effectiveness of the simple neighbourhood structures used. During the search, only the 

most frequently used neighbourhood structures will be used in the extended experiment 

with a relaxed stop condition. Tabu search is used to prevent cycling of the some 

neighbourhood structures. A used/unused strategy is used to control the selection of 

neighbourhood structures. 

 

In Chapter V, a different size of neighbourhood structures i.e. a kempe chain 

neighbourhood structure is applied within the same algorithm as in Chapter IV. This is 

due to the experimental analysis in Chapter IV that different size or complexity of the 

problem might need different neighbourhood structures in order to help the search 

algorithm to explore the search space. This helps in improving the efficiency of the 

algorithm in generating better solutions. The round robin algorithm is utilised to control 

the selection of the neighbourhood structures. This effectively helps the algorithm to 

diversify the search process in getting better solutions. 

 
Chapter VI presents a novel dual sequence simulated annealing approach to solve 

the university course timetabling problem. The approach consists of two schemas that are 

used to avoid the stagnation state. In the first schema, the worse solution is accepted if 

there is no improvement after a certain number of iterations, referred as a local counter. 

The second schema uses a counter, referred as a global non improvement counter to start 

with a new sequence (with a new initial solution). The round robin algorithm is also 

employed here to control the selection of the neighbourhood structures.  

 
Chapter VII describes a simulation of a bacteria swarm optimisation algorithm 

and applied to university course timetabling problems. The proposed algorithm simulates 

the movement of bacteria through searching for nutrient in the search space. The search 

space is divided into three regions based on the quality of solutions. These regions is 

classified as risk region, null region and rich region. The solutions in risk region and null 
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region have to move toward rich region, and solutions in the rich region have to move 

toward the best solution in the same region. Differential evolution algorithm is employed 

within the bacteria swarm optimisation to direct the search toward the potential regions in 

the search space. 

 
Chapter VIII presents an analysis and evaluation of the results obtained from four 

proposed improvement algorithms (as presented in Chapters IV~VII) to solve university 

course timetabling problems. 

 

Finally, the overall conclusions of the work presented in this thesis and research 

directions for future work in this area are presented in Chapter IX.  

 



 

 

CHAPTER II 

 

 

OVERVIEW OF ALGORITHMIC APPROACHES TO COURSE TIMETABLING 
PROBLEMS 

 

 

 

2.1 INTRODUCTION  

 

This chapter provides an overview of the different approaches presented in the literature to 

solve the university course timetabling problems. It discusses the major purposes of these 

techniques and gives an indication of further research guidelines in this area. Due to the vast 

number of published work in this area, this chapter only focuses on the most significant 

works in the literature.  

 

  This chapter is organised as follows:  Section 2.2 presents the general definition of 

university course timetabling problem. Section 2.3 discusses a graph coloring for university 

timetabling problems. Section 2.4 presents most popular techniques applied to university 

course timetabling problems. Section 2.5 presents a summary of the chapter. 

 

2.2 TIMETABLING PROBLEMS  

 

Timetabling is one of the major issues faced by any university around the world that needs a 

lot of human and computer efforts to solve.  The process of timetabling deals with finding 

suitable timeslots for a variety of functions with inadequate resources. This in-adequacy 

creates scheduling problems. Depending on the nature of the problem, the constraints can 

vary with various objectives.  
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 Wren (1996) defined timetabling as:  

 
Timetabling is the allocation, subject to constraints, of given resources to objects 

being placed in space time, in such a way as to satisfy as nearly as possible a set of 

 

   
  Scheduling problems occur in many fields. One of them is called university 

timetabling problems. University timetabling problems are difficult tasks faced by 

educational institutions. These problems can be classified into two main categories i.e. 

course timetabling and examination timetabling (Schaerf 1999). These two categories 

share the same basic characteristics of the general timetabling problem but have 

different constraints that are usually divided into two classes i.e. hard and soft (Burke 

et al. 2004). In exam timetabling problems, a number of exams can be scheduled in 

the same room at the same timeslot (providing seating-capacity constraints are not 

exceeded), whilst in course timetabling problems, generally only allowed one course 

per room, per timeslot (Lewis 2008). The objective is to find a viable course schedule 

(feasible timetable) based on different constraints. The course scheduling and 

examination scheduling problems are common in many ways and dissimilar in other 

ways. One example for the common problem characteristics is that students cannot 

attend two classes or two exams simultaneously. Whereas, the examination scheduling 

problem may not have a fixed time period and normally is scheduled once per 

semester (or per year), but all course scheduling problems are for fixed time periods 

and normally based on weekly basis.  

 

  Fox and Sadeh-Koniecpol (1990) defined the scheduling concept as follows:  

 
Scheduling selects among alternative plans, and assigns resources and times to each 

activity so that they obey the temporal restrictions of activities and the capacity 

limitations of a set of shared resources  

 
  The problem mainly occurs when trying to create a most appropriate timetable 

that balances the requirements of the management, lecturers and students. The 

problem is so critical that in some cases it is impossible to find even a single feasible 
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timetable. It is highly impossible to create a common model that can be used for all 

the universities, as every institute has their own specific constraints and objectives.  

 
  The later discussions only focus on course timetabling problems, which are 

considered as the domain in this research work.    

  

2.3 UNIVERSITY COURSE TIMETABLING PROBLEMS 

 
This thesis addresses university course timetabling problems (UCTT). Where, a set of 

courses are scheduled into a given number of rooms and timeslots across a period of 

time. This usually takes place at the beginning of a semester also the students and 

teachers will be assigned to courses so that the teaching delivery activities can take 

place (Schaerf 1999). During the process of timetabling, a number of problems might 

occur due to different hard and soft constraints. Basically a set of hard constraints 

need to be satisfied in order to produce a feasible solution, apart from satisfying the 

soft constraints as many as possible. Carter and Laporte (1998) defined course 

timetabling as: 

 
-dimensional assignment problem in which students, teachers (or 

faculty members) are assigned to courses, course sections or classes; events 

(individual meetings between students and teachers) are assigned to classrooms and 

 

 
Laporte and Desroches (1986) presented a problem of assigning students to 

course sections in a large engineering school. Carter and Laporte (1998) divided the 

course scheduling problem into five sub-problems such as course timetabling, student 

scheduling, class-teacher timetabling teacher assignment and classroom assignment. 

In addition, Lewis et al. (2007) have summarised the university course timetabling 

problem as the process of assigning lectures to a limited set of timeslots, while trying 

to satisfy some constraints. 

 

The timetabling problem can be modeled using an undirected graph (De Werra 

1985). University course timetabling problems can be viewed as a graph coloring 

model. Graph coloring is concerned with coloring the vertices of a given graph using a 
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given number of colors. The vertices represent the courses, the colors represent the 

timeslots and the edges represent the conflicts between courses Burke et al. (2004). 

Each vertex of a graph should be colored so that no two vertices that are connected by 

an edge are both assigned to the same color, and normally there are a limited number 

of available colors. A wide discussion on the graph coloring problem and its 

relationship to timetabling can be found in (De Werra 1996b, Burke and Ross 1996, 

De Werra 1997, and Burke et al. 2004). 

 
This thesis deals with two sets of university course timetabling problems, 

namely, Enrolment-Based Course Timetabling Problems (EBCTT) and Curriculum-

Based Timetabling Problems (CBCTT). The details of the specification of real-world 

course timetabling problems which are used as benchmark datasets are discussed in 

Chapter III along with the representation of hard and soft constraints and their 

corresponding objective functions.  

 

2.4  TECHNIQUES APPLIED TO THE UNIVERSITY COURSE 
TIMETABLING PROBLEM  

 
Various methods have been investigated to tackle university course timetabling 

problems. The interested readers can refer to the comprehensive survey of the problem 

in (Schaefer 1999, Burke and Petrovic 2002, Lewis 2008, and McCollum et al. 2010). 

For a gap between theory and practice in the area of university timetabling will be 

referred to McCollum (2006). 

 
Carter and Laporte (1996) divided these methods into four categories such as 

sequential, meta-heuristics, constraint-based and cluster methods. A few years later, 

Petrovic and Burke (2004) included some other types such as case-based reasoning 

techniques, multi-criteria approaches and hyper-heuristic methods. On the other hand, 

Abdullah (2006) roughly classified the approaches applied on course timetabling 

problems into ten categories as follows: constraint-based methods, graph-based 

approaches, cluster-based methods, population-based approaches, meta-heuristic 

methods, multi-criteria approaches, hyper-heuristic/self adaptive approaches, case-

based reasoning, knowledge-based and fuzzy-based approaches.  
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Figure 2.1 Summary of the employed approaches on course timetabling problems 
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As mentioned earlier, this chapter focuses on the Enrolment-Based Course 

Timetabling Problem (EBCTT) and the Curriculum-Based Timetabling Problem 

(CBCTT), which has been divided into six categories i.e. graph-based approaches, 

constraint-based approaches, meta-heuristic approaches, hybridisation meta-heuristic 

approaches, population-based approaches and hyper-heuristic algorithms. The 

category for EBCTT is divided into four i.e. constraint based, heuristic/meta-heuristic, 

hybridisation method, integer programming/branch and cut. Figure 2.1 summarises the 

available methods in the literature review that have been employed on both course 

timetabling problems.  

 

2.4.1 Enrolment-Based Course Timetabling Problems  

 

Plenty of approaches proposed in last three decades attempt to solve course 

timetabling problems and specially the enrolment-based course timetabling problem 

(full details about the problem can be found in Chapter III). In this section the 

approaches applied on this problem are discussed.  

 

A. Graph-based Methods 

 

As mentioned in Section 2.3, university course timetabling problems can be viewed as 

a graph coloring model where the vertices represent the courses, the colors represent 

the timeslots and the edges represent the conflicts between courses. 

 

Neufeld and Tartar (1974) implemented a graph coloring method for a class-

teacher timetabling problem. On the other hand, Selim (1988) employed a graph 

coloring methodology for the faculty timetable problem where the vertices were 

divided to reduce the chromatic number. The approach was tested on the real data 

from the Faculty of Science of the American University in Cairo.  

 

De Werra (1996b) applied graph coloring models for course timetabling 

problems. This method has also been used by Asratian and De Werra (2002) to solve a 

class-teacher problem due to its ability to handle several disjoint groups of lectures. 
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Burke et al. (1998) investigated the effect of introducing a random element in the 

employment of graph coloring/timetabling heuristics by proposing two selection 

approaches: 1) tournament selection and 2) bias selection. The authors tested the 

proposed approaches over standard benchmark datasets. The results indicate that there 

are some improvements if a backtracking process is involved in the construction of 

feasible timetables. 

 

Asmuni et al. (2005) applied a fuzzy-based algorithm to order courses based 

on graph coloring heuristics. Three heuristics (saturation degree, largest degree, and 

largest enrolment) have been employed. Experimental results show that this approach 

able to produce good quality solutions. 

 

B. Constraint-based Methods 

 

There are a few papers that discuss the use of Constraint-based methods in university 

course timetabling. In a constraint-based method, a problem is modeled as a set of 

variables with a finite domain. The method allocates values to variables that satisfy a 

number of constraints. Deris et al. (2000) formulated a timetable planning problem as 

a constraint-based reasoning technique which is implemented in an object oriented 

approach for colleges that involved 378 timeslots, 1673 subject sections and 10 rooms. 

They have introduced some constraint categories such as time, space and dispersion 

constraints. To facilitate the search for a solution, the timetabling problem is 

represented as a graph tree. In order to find the solution faster, variable orderings are 

introduced based on size (for example the size of the domain and the quantity of 

constraints of the variables). Verified results showed that the feasible and best 

solutions can be found in a reasonable time.  

 

Zervoudakis and Stamatopoulus (2001) applied a constraint programming 

object-oriented model using ILOG SOLVER C++ library for the university course 

timetabling faced by the Department of Informatics and Telecommunications at the 

University of Athens. The problem involved 68 lectures that need to be scheduled in 

five days of nine teaching timeslots. A variety of search methods (for example depth 
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first search) and variable ordering heuristics were used in searching for near optimal 

solutions.  

 

Legierski (2003) presented a Constraint Programming approach to generate 

feasible solutions for real university department timetabling data which contains 223 

courses. A local search algorithm is used to find better solutions. The approach shows 

promising results. 

 

Sheau et al. (2009) investigated the constraint-based reasoning algorithm in 

solving real world course timetabling problems. The approach used constraints-based 

reasoning as an improvement algorithm based on the number of students for each 

lecture. The proposed algorithm has been tested on the data taken from the Faculty of 

Computer Science and Information System, University of Technology Malaysia and 

the Faculty of Science, Ibb University, Yemen. 

 

C. Meta-heuristic Methods  

 

Over the last few years, meta-heuristics have proven to be highly useful for 

approximately solving timetabling problems in practice. The main advantage of these 

techniques is that they can handle a wide range of constraints and capable to escape 

from local optima (Glover and Laguna 1993). Meta-heuristic is a computational 

method that optimises a problem by repeatedly trying to improve a candidate solution 

with regard to a given measure of quality (Talbi 2009). 

 

Osman and Laporte (1996) defined meta-heuristic as: 

 

A meta-heuristic is formally defined as an iterative generation process which guides 

a subordinate heuristic by combining intelligently different concepts for exploring and 

exploiting the search space, learning strategies are used to structure information in 

order to find efficiently near-optimal solutions.  

 

Later, Glover and Laguna (1997) interfused a meta-heuristic as:  
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A meta-heuristic refers to a master strategy that guides and modifies other heuristics 

to produce solutions beyond those that are normally generated in a quest for local 

optimality. The heuristics guided by such a meta-strategy may be high level 

procedures or may embody nothing more than a description of available moves for 

transforming one solution into another, together with an associated evaluation rule.  

 

l. (1999) also gave a definition for meta-heuristic i.e.:  

 

-heuristic is an iterative master process that guides and modifies the 

operations of subordinate heuristics to efficiently produce high-quality solutions. It 

may manipulate a complete (or incomplete) single solution or a collection of solutions 

at each iteration. The subordinate heuristics may be high (or low) level procedures, or 

 

 

In 2005, a new definition of meta-heuristic appareled in Meta-heuristic 

Network Website: 

    

-heuristic is a set of concepts that can be used to define heuristic methods that 

can be applied to a wide set of different problems. In other words, a meta-heuristic 

can be seen as a general algorithmic framework which can be applied to different 

optimisation problems with relatively few modifications to make them adapted to a 

 

 

A lot of the meta-heuristic methods are employed on university course 

timetabling problems. The interested readers can refer to Lewis (2008) for more 

detailed description of the different meta-heuristic approaches (like Great Deluge, 

Tabu Search, Simulated Annealing, etc) published in the past few years.   

 

 The following subsections present the literature review on meta-heuristic 

algorithms that have been applied on the enrolment-based course timetabling problem. 

 

 

 



19 

 

Great Deluge 
 
Dueck (1993) proposed a new meta-heuristic algorithm called as Great Deluge. Great 

Deluge is classified as a variant of simulated annealing algorithm. Great deluge 

depends on two parameters i.e. the estimate of the quality of solution that a user 

requires and the computational time  (Burke et al. 

2004). Improving solutions are always accepted. A non improving solution is 

adaptively accepted if its objective function is less than or equal to some given upper 

boundary value level in the paper by Dueck (1993)) for a minimisation 

case. level

constant  where  is a decay rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 A great deluge algorithm (Dueck 1993) 

 

Figure 2.2 shows the pseudo-code of the standard Great Deluge. After 

initialisation the parameters (initial solution, Sol, initial water level, level, and the 

decay rate ). The algorithm starts iteratively generate a neighbourhood solution, Sol*, 

by modifying the initial solution, Sol. If there is an improvement, the neighbourhood 

solution will be accepted and replaced with Sol, Sol=Sol*. A worse solutions can be 

accepted if the quality of neighbourhood solution is less than or equal to level. Sol will 

 

 

Great Deluge  
Begin  
            Sol:=initial solution; 
          Set initial water level, level;  
          Set final water level, Lfinal; 
           
          Do while (stopping criterion) 
                  generate an Sol*  N(s); 
                  if  
                      Sol=Sol*; 
                      level = level-  
             else 
                 if level 
                    Sol=Sol*; 
            end do; 
end;  
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be updated and level = level- This process is repeated for a pre-determined number 

of iteration.  

 

Burke et al. (2002) applied the great deluge algorithm to course timetabling by 

means of 20 instances of the International Timetabling Competition 2002 which was 

sponsored by PATAT IV conference in 2003. The proposed technique is proved to be 

effective and was able to obtain 8 best known results of the 23 datasets. These results 

represented the third among 21 participants.   

 

Burke et al. (2004) applied a great deluge to solve standard benchmark 

datasets. In this work, authors investigated two parameters that affect the performance 

of great deluge algorithm such as an execution time and a level of solution quality. 

The experimental results show that the great deluge algorithm is able to obtain a 

number of best known results. At the time of the algorithm was proposed, it was able 

to obtain 7 new results out of 20. Finally, the authors showed that in the great deluge 

algorithm only one parameter needs to be defined, i.e. the amount of the available 

search time, whilst the level of solution quality is taken from the initial solution. 

Moreover, they reported that the better results can be obtained by more execution time 

spent. 

 

McMullan (2007) introduced an extended version of great deluge algorithm for 

Enrolment-based course timetabling problems. The approach focuses on the main 

parameter which is the decay rate as it dictates how fast the boundary is reduced and 

ultimately the condition for accepting worse moves is narrowed. The approach uses a 

decay rate proportional to 50% of the entire run to force the algorithm to reach the 

optimal solution. The algorithm is able to obtain solutions in a relatively short amount 

of time and managed to get 60% improvement on some cases when compared to the 

best known results in the literature. 

 

Landa-Silva and Obit (2008) employed a great deluge with non-linear decay 

rate on the eleven benchmark course instances introduced by Socha et al. (2002). The 

algorithm is an extension of the original great deluge algorithm proposed by Dueck 

(1993). The difference is that the decompose rate changes on every iteration based on 
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the current water level but in the original great deluge it is preset.  Experimentation 

reveals that the algorithm is capable of producing new best known results on 4 out of 

the 11 tested instances.  

 
Tabu Search. 
 

One of the most popular meta-heuristic algorithms is Tabu Search, which is proposed 

by Glover (1986). Glover and Laguna (1997) introduced tabu search as:  

 
A meta-heuristic that guides a local heuristic search procedure to explore the 

solution space beyond local optimality  

 
The basic idea of tabu search is to explore feasible regions of search space by a 

sequence of moves. Thus, it can escapes from local optima. Tabu list, Tl (can be short 

or long term memory) contains some forbidden moves to prevent cycling of 

neighbouring solutions. An aspiration criterion can also be used which change 

forbidden move to non forbidden if it results in a solution that has an objective value 

better than the best solution found so far. 

 
 

 

 

 

 

 

 

 

 

 

            
Figure 2.3 A basic tabu search algorithm (Talbi 2009) 

 

Figure 2.3 illustrates a basic tabu search algorithm for a minimisation problem, 

where Tl is subset of moves contributed generating Sol* and N(s) represents the set of 

 

 

Tabu Search 
Begin  
           Sol:=initial solution; 
           Set Sol as a trail solution;  
           Set Solbest as best solution; 
           Set tabu list length; 
           repeat   
                 give N(s), tabu list Tl, aspiration criterion, generate an Sol*; 
                 find the best Sol*; 
                 insert moves generated Sol* in Tl; 
                 if f(Sol*) < f(Solbest then Solbest=Sol* and Sol=Sol*; 
                     update Tl;               

           until (stopping criterion); 
end;  
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neighbouring solutions. Tabu search start with initial solution, Sol, then initialise the 

tabu parameters, tabu list length, Tl. Next, several neighborhoods solutions, 

N(s), of the current solution are evaluated. The best non-tabu neighbor solutions is 

accepted and added into tabu list Tl. However, it is already in the tabu list, it can be 

accepted if its objective function is better than the best one found so far (aspiration 

criterion). Then next, update the best solutions (Solbest).  

 

Since 1986 up to date, the concept of tabu search has been applied in both 

artificial intelligence and optimisation fields. In addition, Tabu Search algorithm has 

been successfully applied to university course timetabling problems. The first 

implementation for real university course timetabling problem using tabu search 

algorithm was by Glover and Laguna (1993). The results reported were good.  

 

Tabu search was improved by many researchers to become one of the 

preferred solution approaches (Glover and Laguna 1997). Later, Costa (1994) applied 

two tabu lists, where the first list is for courses and the second list is used to keep 

track the history of courses and timeslots. This mechanism leads to control the 

movement of generating the new solutions, i.e. if a course is already inserted into the 

first tabu list; this indicates that it cannot be used in generating a solution. The second 

tabu list controls the assignment of timeslots to courses, as  the timeslot cannot be 

assigned for a course while this pair of course and timeslot is inside the second tabu 

list. A weight mechanism is used to enhance the diversification through the search 

process. Although this approach obtained good results, but several parameters need to 

be fine tuned such as tabu list size and weights.  

 

A variable tabu list size has been applied to solve a large high school 

timetabling problem by Schaerf (1996, 1999). The author inserts each applied move to 

a tabu list. The weakness of this algorithm is that the size of tabu list is randomly 

selected. However, experimental results show that this approach is able to schedule 

most of the courses, thus obtaining better results than the results obtained by manual 

scheduling.  
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that have been used by the great deluge proposed algorithm for all datasets. The x-axis 

represents the dataset while the y-axis represents the frequency of the neighbourhood 

structures employed throughout the search. It can be clearly seen that in most of small

and medium instances, neighbourhood structures Nbs2 and Nbs3 are the most popular 

structures used, whereas the popular structures for the large dataset are Nbs1 and Nbs2.

This shows that different size or complexity of the problem might need different 

neighbourhood structures in order to help the search algorithm to explore the search 

space. It is also evident that some neighbourhood structures do not contribute much to 

obtain a good quality solution (with respect to the objective function).  

Figure 4.6.(a), (b)   Frequency of the neighbourhood structures used for small,  medium
and large datasets 

Table 4.1 shows the results comparison on different neighbourhood structures when 

applied to the great deluge algorithm for 100,000 iterations. The preliminary results 

demonstrate that by using 2 neighbourhood structures, the algorithm is still able to 

achieve better results than 4 neighbourhood structures on all of the cases. Less number of 

good neighbourhood structures still able to help the algorithm to find better solutions as 

the algorithm have extra time to explore the search space.  

Table 4.1 Comparison on different moves 

Data set Initial 
solution

The algorithm 
with 4 Nbs

The algorithm with a set of 
2 Nbs

small1 266 0 0

small2 225 0 0

(a

Nbs1

Nbs2

Nbs3

Nbs4

(b

Nbs1

Nbs2

Nbs3

Nbs4
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B.  Results under More Computational Resources 
 
In this experiment, the potential of the search process is carried out by the algorithm with 

a relaxed stop condition. For this purpose, the termination criterion is set as 200000 

iterations with a different set of moves, as presented in the preliminary experiment. The 

best results out of 11 runs obtained are presented. Table 4.2 shows the comparison of the 

approach in this work with other available approaches in the literature on all instances. In 

methods a , that mean there are many 

methods proposed by many authors obtained zero penalty cost for the small datasets (i.e. 

Genetic algorithm and local search by Abdullah and Turabieh (2008), Randomised 

iterative improvement algorithm by Abdullah et al. (2007a), Graph hyper heuristic by 

Burke et al. (2007a), Variable neighbourhood search with tabu by Abdullah et al. (2005), 

Hybrid evolutionary approach by Abdullah et al. (2007b), Non linear great deluge by 

Landa-Silva and Obit (2008), The fuzzy multiple heuristic algorithm by Asmuni et al. 

(2005),  The max-min ant algorithm by Socha et al. (2002), and The tabu hyper-heuristics 

by Burke et al. (2003b)). 

 
Note that the best results are presented in bold. It can be seen that the proposed 

approach in this work has better results on all datasets except for the large dataset. 

 
 
 
 

    

small3 289 0 0 

small4 209 0 0 

small5 382 0 0 

medium1 957 186 182 

medium2 896 225 202 

medium3 957 226 223 

medium4 835 178 170 

medium5 711 167 135 

large 1613 980 845 
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Table 4.2.   Best results and comparison with other algorithms under a relaxing stop   
condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7   Convergences of (a) small5, (b) medium3, (c) medium5 and , (d) large   
datasets using a Great Deluge with Tabu Search algorithms 

 

Figures 4.7 (a), (b), (c) and (d) show the convergence of the search process for 

  Dataset 

Great Deluge with 
Tabu search Best Known results 

Penalty           
 cost  

 Penalty  
     cost 

Method Author 

  small1 0           0 Many methods Many authors 
  small2 0           0 Many methods Many authors 
  small3 0             0 Many methods Many authors 
  small4 0             0 Many methods Many authors 
  small5 0             0 Many methods Many authors 
 medium1 78             80 Great Deluge McMullan (2007) 
 medium2 92             105 Great Deluge McMullan (2007) 
 medium3 135             135 Electromagnetic Turabieh et al. (2009) 
 medium4 75             79 Electromagnetic Turabieh et al. (2009) 
 medium5 68             73 Harmony search Al-Betar et al. (2010) 
 large 556              424 Harmony search Al-Betar et al. (2010) 

(a) (b) 

(c) (d) 

small5  medium3  

medium5  large  

Number of Iterations   Number of Iterations   

Number of Iterations   Number of Iterations   
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medium3, medium5 and large datasets. The x-axis represents the number of iterations, 

while the y-axis represents the penalty cost. It can be seen from the figures that the 

penalty cost decreases toward the optimal value which is zero. The penalty cost can be 

quickly reduced at the beginning of the search. This is due to the fact that at the 

beginning of the search process, the search space is explored more than at the end, which 

helps to increase the diversity of the search and gives a greater chance to find better 

solutions. 

 
 

 

 

 

 

 

 

 

  

 

       

      
         Figure 4.8 Box plots of the penalty costs for (a) small, (b) medium and (c) large 
                         datasets. 
 

Figure 4.8 shows the box plots of the penalty cost when solving small, medium 

and large instances, respectively. The results for the large dataset are most consistent 

(less dispersed) compared to medium and small datasets (worse dispersed case in these 

experiments). We believe that the neighbourhood structures (Nbs1 and Nbs2) that are 

applied to the large dataset are able to force the search algorithm to diversify its 

exploration in the solution space by moving from one neighbourhood structure to another 

even though there may be fewer and more sparsely distributed solution points in the 

solutions space since too many courses are conflicting with each other. When we 

compare between small and medium datasets, Figure 4.8 (b) shows less dispersion of 

solution points compared to Figure 4.8 (a). Again, applying the same neighbourhood 

structures (Nbs2 and Nbs3) for both instances most likely does not result in similar 

  (a)   (b) 

 (c) 
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behaviour of the search algorithm. This is supported by Figure 4.8 (a) where the 

dispersion of solution points for small datasets is not consistent from one to another. For 

example, small2 in Figure 4.8 (a) shows worse dispersion compared to small4. From 

these experiments, we believe that the size of the search space may not be dependent on 

the problem size due to the fact that the dispersion of solution points are significantly 

different from one to another, even though the problems are from the same group of 

datasets with the same parameter values. 

 

It is believed that evaluating results is an important part of research. The standard 

deviation (StD) is used to evaluate the results in this thesis. It is a widely used 

measurement of diversity used in statistics theory. It shows how much dispersion there is 

from the average. A low standard deviation indicates that the results tend to be very close 

to the average whereas high standard deviation indicates that the results are spread out 

over a large range of values.  

 
Here, the best, average and worst results out of 11 runs obtained are presented. 

Table 4.3 shows the best, and average and maximum (Max) of each datasets and also the 

standard deviation (StD) for all datasets. As shown in Table 4.3, there is a wide range of 

StD values. For small datasets the StD values are between 0 and 1.5. Note that even the 

value of the StD is small, that normally represents a less dispersion on the solutions. For 

medium and large datasets, these imply a big dispersion between the solutions. From this, 

it can be concluded that the proposed algorithm here works well for the small datasets 

only, but not on larger size of datasets. Thus, motivate to further investigate either the 

neighbourhood structures or the search algorithm can be modified to tackle this 

drawback. This will be carried out in the next chapter (Chapter VI) 

 

Table 4.3 Results using Great Deluge and Tabu Search on 
           enrolment-based course timetabling problems 

 
Datasets Best Average Max StD 

small1 0 2 2 0.75 
small2 0 1.2 4 1.44 
small3  0 1.8 3 1.03 
smalll4 0 1 2 0.83 
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4.3.2 Curriculum-Based Course Timetabling Problem 

 

A. UD1 Dataset  

 
The Curriculum-based timetabling problem consists of the weekly scheduling of lectures 

for several university courses within a given number of rooms and time periods, where 

conflicts between courses are set according to the curricula of the university.   

 
Here, only the three first soft constraints outlined in Section 3.3.2 are taken into 

consideration, as in formulation of curriculum-based course timetabling problems Track 

3 UD1 datasets (De Cesco et al. 2008). Table 4.4 shows the results obtained and 

comparison with the best known solutions. We also compared our results with the best 

uploaded to the Curriculum-Based Course Timetabling (CBCTT) website1.  

 

Table 4.4 Best results and comparison with other algorithms. 

 

                                                 
1 http://tabu.diegm.uniud.it/ctt/ 

 Continue     
small5 0 0.6 2 0.68 
medium1 78 132.2 174 31.33 
medium2 92 114.6 124 10.64 
medium3 135 162.0 180 13.46 
medium4  75 111.2 160 24.93 
medium5 68 113.1 160 34.33 
large  556 738.6 835 74.48 

Dataset 
Great Deluge 

with Tabu 
search 

Abdullah et 
al. (2009) 

Cesco et 
al. (2008) 

Best 
uploaded 

to CBCTT 

Method 
applied 

 Best  Ave. Best Ave.    

comp01 4 4.72 4 6.8 4 4 Tabu Search  
comp02 22 33.6 20 27.6 35 20 Tabu Search 
comp03 47 31.09 41 48.3 52 38 Tabu Search 
comp04 21 23.7  20 21.3 21 18 Tabu Search 
comp05 261 264.7 235 237.8 244 219 Tabu Search 
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The best results out of 11 runs obtained are presented. Note that, the best results 

(including the results uploaded to CBCTT) are presented in bold.  Also, note that the 

results in italic represent the best result appeared in the literature. It can be seen that, this 

approach is able to produce solutions with the lowest penalty cost (with respect to the 

 

comp06 38 39.3 24 24 27 16 
Mathematical         
programming  
 

comp07 10 11.2 12 13.2 13 3 
  Mathematical                                  
  Programming 
 

comp08 22 22.3 22 22.8 24 20 
  Mathematical  
  Programming 
 

comp09 73 74.9 71 75.2 61 54 Tabu Search 

comp10 14 15.3 13 14.8 10 2 
  Mathematical  
  Programming 
 

comp11  0   0 0 5.8 0 0 Tabu Search 
comp12 297 300.6 261 265.1 268 239 Tabu Search 
comp13 51 55.8 67 69.3 38 32 Tabu Search 
comp14 34 36 36 36 30 27 Tabu Search 
comp15 69 69.3 39 34.2 46 38 Tabu Search 
comp16 50 50.5 30 30 28 16 Tabu Search 
comp17 49 49.7 35 37.4 44 34 Tabu Search 
comp18 82 82.9 39 45.2 41 34 Tabu Search 
comp19 40 45.6 41 47.1 36 32 Tabu Search 
comp20 49 50.2 19 19 25 2 Tabu Search 
comp21 69 78.9 88 109.2 69 43 Tabu Search 

DDS1 87 88.3   238 39 
Mathematical  

  Programming 
 

DDS2 0   0   0 0 Tabu Search 
DDS3 0 2.0   0 0 Tabu Search 
DDS4 16 18.1   233 16 Tabu Search 
DDS5 0 0.6   0 0 Tabu Search 

DDS6 0 1.6   5 0 
Mathematical          
programming 
 

DDS7 0 3.36   0 0 Tabu Search 
     Test1 212 215.8   214 212 Tabu Search 
     Test2 8 9.36   8 8 Tabu Search 
     Test3 40 46.5   36 35 Tabu Search 

Test4 64 70.9   43 27 
  Mathematical  
  programming 
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objective function) on comp01, comp07, comp08, comp11, comp21, DDS1- DDS7, Test1

and Test2 datasets. Generally, in most of the cases, the results presented here are 

comparable to the performance of Tabu Search (Cesco et al. 2008), Mathematical 

Programming approach, Genetic Algorithm, and Sequential Local Search algorithms 

proposed by Abdullah et al. (2009).  

Figure 4.9 (a), (b), (c) and (d) show the performance of the algorithm when 

exploring the search space on comp01, comp08, DDS4, and Test2 datasets, respectively. 

Again the x-axis represents the number of iterations, while the y-axis represents the 

penalty cost. The distribution of points in these diagrams shows the correlation between 

the number of iterations and the overall solution quality. An analysis of the diagrams 

shows that there is a trend of the cost improvement as the number of iterations increases. 

However, as the number of iterations increases, the slope of the curves illustrates the fast 

improvement on the quality of solutions at the beginning of the search in all figures 

where there is possibly many room for improvement. The fast improvement becomes less 

pronounced towards the end of the search. 

Figure 4.9 Convergence of (a) comp01, (b) comp08, (c) DDS4, and (d) Test2 
datasets using Great Deluge with Tabu Search algorithms  

(b)

(c) (d)

(a)

comp01 comp08

DDS4 Test2 

Number of Iterations  Number of Iterations  

Number of Iterations  Number of Iterations  
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Figure 4.10 shows the box plot of the penalty cost on some of the instances in the UD1 

problem considered in this experiment. The results for comp01, comp03, comp13, 

comp21, DDS4, Test2 and Test3 datasets as in Figure 4.10 show a less dispersion of 

solution points where the median, the best and the worst are closed to each other. For the 

DDS2 dataset, there is no dispersion at all, which show the robustness of the algorithm 

especially when tested on DDS2 dataset. In addition, the median is closed to the best 

solution compared to the worst (max) on comp02, comp04, comp06, comp09, comp11, 

comp14, comp15, comp20, DDS3, DDS5 and Test1 datasets. This means that 60% of 

solutions are closed to the best solution. Therefore, we can say that our algorithm is 

robust and able to produce better solutions on UD1 datasets.  

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                

  

Figure 4.10 Box plots of penalty costs for UD1 datasets.  
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Table 4.5 summarises the results out of 11 runs obtained under curriculum-based course 

timetabling problems (UD1 datasets). The best, average, maximum (Max), and the 

standard deviation (StD) for all datasets are presented. As shown in the Table 4.5, there is 

less dispersion on the obtained solutions for almost three-quarter of the datasets, where 

the StD values are between 1 and 2.  From this, it can be concluded that the proposed 

algorithm here is very effective for most of UD1 datasets.  

 
 

           Table 4.5 Results using Great Deluge and Tabu Search on Curriculum                                                
-based course timetabling problems (UD1) 

Datasets Best Average Max StD 

comp01 4 4.72 6 0.8202 
comp02 22 33.6 50 9.4638 
comp03 47 31.09 61 5.48386 
comp04 21 23.7  48 6.81842 
comp05 261 264.7 270 3.29738 
comp06 38 39.3 41 0.89442 
comp07 10 11.2 12 0.87386 
comp08 22 22.3 23 0.52223 
comp09 73 74.9 78 1.80403 
comp10 14 15.3 16 0.70064 
comp11 0 0 0 0 
comp12 297 300.6 333 15.6716 
comp13 51 55.8 62 3.75136 
comp14 34 36.0 37 1.22102 
comp15 69 69.3 70 0.50452 
comp16 50 50.5 51 0.46709 
comp17 49 49.7 51 0.8202 
comp18 82 82.9 84 0.75075 
comp19 40 45.6 46 1.75809 
comp20 49 50.2 52 1.12006 
comp21 69 78.9 99 7.64555 

  DDS1 87 88.3 90 1.12006 
  DDS2 0 0 0 0 
  DDS3 0 2.0 3 1.39841 
  DDS4 16 18.1 22 1.90215 
  DDS5 0 0.6 1 0.52223 
  DDS6 0 1.6 3 1.12006 
  DDS7 0 3.36 7 2.65603 
    


